DOI QR코드

DOI QR Code

Differential expression of a poplar SK2-type dehydrin gene in response to various stresses

  • Bae, Eun-Kyung (Biotechnology Division, Korea Forest Research Institute) ;
  • Lee, Hyo-Shin (Biotechnology Division, Korea Forest Research Institute) ;
  • Lee, Jae-Soon (Biotechnology Division, Korea Forest Research Institute) ;
  • Noh, Eun-Woon (Biotechnology Division, Korea Forest Research Institute)
  • Published : 2009.07.31

Abstract

Dehydrins are group II, late embryogenesis abundant proteins that act putatively as chaperones in stressed plants. To elucidate the function of dehydrins in poplar, we isolated the $SK_2$-type dehydrin gene Podhn from Populus alba $\times$ P. tremula var. glandulosa suspension cells and analyzed its expression following treatments of abiotic stress, wounding and plant growth regulator. Sequence homology and phylogenetic analyses indicate Podhn encodes an acidic dehydrin (pI 5.14, 277 amino acids, predicted size 25.6 kDa) containing two lysine-rich "K-segments" and a 7-serine residue "S-segment", both characteristic of $SK_2$-type dehydrins. Southern blots show Podhn genes form a small gene family in poplar. Podhn was expressed in all tissues examined under unstressed conditions, but most strongly in cell suspensions (especially in the stationary phase). Drought, salt, cold and exogenous abscisic acid (ABA) treatments enhanced Podhn expression, while wounding and jasmonic acid caused its reduction. Therefore, Podhn might be involved in ABA or stress response.

Keywords

References

  1. Campbell, S. C. and Close, T. J. (1997) Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytol. 137, 61-74 https://doi.org/10.1046/j.1469-8137.1997.00831.x
  2. Wisniewski, M., Bassett, C. and Arora, R. (2004) Distribution and partial characterization of seasonally expressed proteins in different aged shoots and roots of 'Loring' peach (Prunus persica). Tree Physiol. 24, 339-345 https://doi.org/10.1093/treephys/24.3.339
  3. Close, T. J. (1997) Dehydrins: a commonality in the response of plants to dehydration and low temperature. Physiol. Plant. 100, 291-296 https://doi.org/10.1111/j.1399-3054.1997.tb04785.x
  4. Nylander, M., Svensson, J., Palva, E. T. and Welin, B. V. (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol. Biol. 45, 263-279 https://doi.org/10.1023/A:1006469128280
  5. Richard, S., Morency, M. J., Drevet, C., Jouanin, L. and Seguin, A. (2000) Isolation and characterization of a dehydrin gene from white spruce induced upon wounding, drought and cold stresses. Plant Mol. Biol. 43, 1-10 https://doi.org/10.1023/A:1006453811911
  6. Borovskii, G. B., Stupnikova, I. V., Antipina, A. I., Vladimirova, S. V. and Voinikov, V. K. (2002) Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biol. 2, 5 https://doi.org/10.1186/1471-2229-2-5
  7. Rorat, T., Szabala, B. M., Grygorowicz, W. J., Wojtowicz, B., Yin, Z. and Rey, P. (2006) Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species. Planta. 224, 205-221 https://doi.org/10.1007/s00425-005-0200-1
  8. Jans, D. A., Xiao, C. Y. and Lam, M. H. (2000) Nuclear targeting signal recognition: a key control point in nuclear transport? Bioassays 22, 532-544 https://doi.org/10.1002/(SICI)1521-1878(200006)22:6<532::AID-BIES6>3.0.CO;2-O
  9. Pulla, R. K., Kim, Y. J., Kim, M. K., Senthil, K. S., In, J. G. and Yang, D. C. (2008) Isolation of a novel dehydrin gene from Codonopsis lanceolata and analysis of its response to abiotic stresses. BMB Rep. 41, 338-343 https://doi.org/10.5483/BMBRep.2008.41.4.338
  10. Caruso, A., Morabito, D., Delmotte, F., Kahlem, G. and Carpin, S. (2002) Dehydrin induction during drought and osmotic stress in Populus. Plant Physiol. Biochem. 40, 1033-1042 https://doi.org/10.1016/S0981-9428(02)01468-7
  11. Chung, E. S., Kim, S. Y., Yi, S. Y. and Choi, D. I. (2003) Capsicum annuum dehydrin, an osmotic-stress gene in hot pepper plants. Mol. Cells 15, 327-332
  12. Giordani, T., Natali, L. and Cavallini, T. (2003) Analysis of a dehydrin encoding gene and its phylogenetic utility in Helianthus. Theor. Appl. Genet. 107, 316-325 https://doi.org/10.1007/s00122-003-1249-5
  13. Welling, A., Rinne, P., Vihera-Aarnio, A., Kontunen-Soppela, S., Heino, P. and Palva, E. T. (2004) Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.). J. Exp. Bot. 396, 507-516 https://doi.org/10.1093/jxb/erh045
  14. Yao, K., Lockhart, K. M. and Kalanack, J. J. (2005) Cloning of dehydrin coding sequences from Brassica juncea and Brassica napus and their low temperature-inducible expression in germinating seeds. Plant Physiol. Biochem. 43, 83-89 https://doi.org/10.1016/j.plaphy.2004.12.006
  15. Lee, S. C., Lee, M. Y., Kim, S. J., Jun, S. H., An, G. H. and Kim, S. R. (2005) Characterization of an abiotic stress-inducible dehydrin gene, OsDhn1, in rice (Oryza sativa L.) Mol. Cells 19, 212-218
  16. Lee, H., Bae, E. K., Park, S. Y., Sj$\ddot{o}$din, A., Lee, J. S., Noh, E. W. and Jansson, S. (2007) Growth-phase-dependent gene expression profiling of poplar (Populus alba × Populus tremula var. glandulosa) suspension cells. Physiol. Plant. 131, 599-613 https://doi.org/10.1111/j.1399-3054.2007.00987.x
  17. Errabii, T., Gandonou, C. B., Essalmani, H., Abrini, J., Idaomar, M. and Skali-Senhaji, N. (2006) Growth, proline and ion accumulation in sugarcane callus cultures under drought-induced osmotic stress and its subsequent relief. Afr. J. Biotechnol. 5, 1488-1493
  18. Mohamed, M. A. H., Harris, P. J. C. and Henderson, J. (2000). In vitro selection and characterisation of a drought tolerant clone of Tagetes minuta. Plant Sci. 159, 213-222 https://doi.org/10.1016/S0168-9452(00)00339-3
  19. Shinozaki, K. and Yamaguchi-Shinozaki, K. (2007) Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58, 221-227 https://doi.org/10.1093/jxb/erl164
  20. Sun, M. M., Li, L. H., Xie H., Ma, R. C. and He, Y. K. (2007) Differentially expressed genes under cold acclimation in Physcomitrella patens. J. Biochem. Mol. Bio. 40, 986-1001 https://doi.org/10.5483/BMBRep.2007.40.6.986
  21. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant. 15, 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  22. Choi, Y. I., Noh, E. W., Han, M. S. and Yi, Y. S. (2001) Estimation of cellular damages caused by paraquat and lead using a cell culture system. J. Plant Biotech. 3, 83-88
  23. McGookin, R. (1984) RNA extraction by the guanidine thiocyanate procedure; in Methods in Molecular Biology, Walker, J. M. (ed.), pp. 113-116, Humana Press, New Jersey, USA
  24. Southern, E. M. (1975) Detection of specific sequences among DNA fragments. J. Mol. Biol. 98, 503-517 https://doi.org/10.1016/S0022-2836(75)80083-0
  25. Lee, H., Lee, J. S., Noh, E. W., Bae, E. K., Choi, Y. I. and Han, M. S. (2005) Generation and analysis of expressed sequence tags from poplar (Populus alba × Populus tremula var. glandulosa) suspension cells. Plant Sci. 169, 1118-1124 https://doi.org/10.1016/j.plantsci.2005.07.013

Cited by

  1. Characterization of a Novel Y2K-type Dehydrin VrDhn1 from Vigna radiata vol.53, pp.5, 2012, https://doi.org/10.1093/pcp/pcs040
  2. Compatible solute, transporter protein, transcription factor, and hormone-related gene expression provides an indicator of drought stress in Paulownia fortunei vol.14, pp.3, 2014, https://doi.org/10.1007/s10142-014-0373-4
  3. Functional characterization of an acidic SK3 dehydrin isolated from an Opuntia streptacantha cDNA library vol.235, pp.3, 2012, https://doi.org/10.1007/s00425-011-1531-8
  4. MusaDHN-1, a novel multiple stress-inducible SK3-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana vol.234, pp.5, 2011, https://doi.org/10.1007/s00425-011-1455-3
  5. Association of Protective Proteins with Dehydration and Desiccation of Orthodox and Recalcitrant Category Seeds of Three Acer Genus Species vol.31, pp.3, 2012, https://doi.org/10.1007/s00344-011-9246-4
  6. The dehydrin wzy2 promoter from wheat defines its contribution to stress tolerance vol.14, pp.1, 2014, https://doi.org/10.1007/s10142-013-0354-z
  7. Genome-wide expression profiling of the transcriptomes of four Paulownia tomentosa accessions in response to drought vol.104, pp.4, 2014, https://doi.org/10.1016/j.ygeno.2014.08.008
  8. Drought, salt and wounding stress induce the expression of the plasma membrane intrinsic protein 1 gene in poplar (Populus alba×P. tremula var. glandulosa) vol.483, pp.1-2, 2011, https://doi.org/10.1016/j.gene.2011.05.015
  9. Overexpression of a maize dehydrin gene, ZmDHN2b, in tobacco enhances tolerance to low temperature vol.65, pp.1, 2011, https://doi.org/10.1007/s10725-011-9580-3
  10. Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato vol.169, pp.5, 2012, https://doi.org/10.1016/j.jplph.2011.11.018
  11. Identification and expression of different dehydrin subclasses involved in the drought response of Trifolium repens vol.171, pp.3-4, 2014, https://doi.org/10.1016/j.jplph.2013.07.013
  12. Genome-wide Identification and Characterization of a Dehydrin Gene Family in Poplar (Populus trichocarpa) vol.30, pp.4, 2012, https://doi.org/10.1007/s11105-011-0395-1
  13. Characterisation of an SKn-type Dehydrin Promoter from Wheat and Its Responsiveness to Various Abiotic and Biotic Stresses vol.32, pp.3, 2014, https://doi.org/10.1007/s11105-013-0681-1
  14. Dehydrins are highly expressed in overwintering buds and enhance drought and freezing tolerance in Gentiana triflora vol.213, 2013, https://doi.org/10.1016/j.plantsci.2013.08.012