• Title/Summary/Keyword: Abnormal State Detection

Search Result 86, Processing Time 0.027 seconds

A Study on the Wear Detection of Drill State for Prediction Monitoring System (예측감시 시스템에 의한 드릴의 마멸검출에 관한 연구)

  • 신형곤;김태영
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.103-111
    • /
    • 2002
  • Out of all metal-cutting process, the hole-making process is the most widely used. It is estimated to be more than 30% of the total metal-cutting process. It is therefore desirable to monitor and detect drill wear during the hole-drilling process. One important aspect in controlling the drilling process is monitoring drill wear status. There are two systems, Basic system and Online system, to detect the drill wear. Basic system comprised of spindle rotational speed, feed rates, thrust torque and flank wear measured by tool microscope. Outline system comprised of spindle rotational speed feed rates, AE signal, flank wear area measured by computer vision, On-line monitoring system does not need to stop the process to inspect drill wear. Backpropagation neural networks (BPNs) were used for on-line detection of drill wear. The output was the drill wear state which was either usable or failure. This paper deals with an on-line drill wear monitoring system to fit the detection of the abnormal tool state.

Novelty Detection on Web-server Log Dataset (웹서버 로그 데이터의 이상상태 탐지 기법)

  • Lee, Hwaseong;Kim, Ki Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1311-1319
    • /
    • 2019
  • Currently, the web environment is a commonly used area for sharing information and conducting business. It is becoming an attack point for external hacking targeting on personal information leakage or system failure. Conventional signature-based detection is used in cyber threat but signature-based detection has a limitation that it is difficult to detect the pattern when it is changed like polymorphism. In particular, injection attack is known to the most critical security risks based on web vulnerabilities and various variants are possible at any time. In this paper, we propose a novelty detection technique to detect abnormal state that deviates from the normal state on web-server log dataset(WSLD). The proposed method is a machine learning-based technique to detect a minor anomalous data that tends to be different from a large number of normal data after replacing strings in web-server log dataset with vectors using machine learning-based embedding algorithm.

A Study on Wafer to Wafer Malfunction Detection using End Point Detection(EPD) Signal (EPD 신호궤적을 이용한 개별 웨이퍼간 이상검출에 관한 연구)

  • 이석주;차상엽;최순혁;고택범;우광방
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.506-516
    • /
    • 1998
  • In this paper, an algorithm is proposed to detect the malfunction of plasma-etching characteristics using EPD signal trajectories. EPD signal trajectories offer many information on plasma-etching process state, so they must be considered as the most important data sets to predict the wafer states in plasma-etching process. A recent work has shown that EPD signal trajectories were successfully incorporated into process modeling through critical parameter extraction, but this method consumes much effort and time. So Principal component analysis(PCA) can be applied. PCA is the linear transformation algorithm which converts correlated high-dimensional data sets to uncorrelated low-dimensional data sets. Based on this reason neural network model can improve its performance and convergence speed when it uses the features which are extracted from raw EPD signals by PCA. Wafer-state variables, Critical Dimension(CD) and uniformity can be estimated by simulation using neural network model into which EPD signals are incorporated. After CD and uniformity values are predicted, proposed algorithm determines whether malfunction values are produced or not. If malfunction values arise, the etching process is stopped immediately. As a result, through simulation, we can keep the abnormal state of etching process from propagating into the next run. All the procedures of this algorithm can be performed on-line, i.e. wafer to wafer.

  • PDF

UV Detecting according to Corona Discharge Intensity using UV Sensor (자외선 센서를 이용한 코로나 방전 강도에 따른 자외선 검출)

  • Kwag, Dong-Soon;Kim, Young-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.3
    • /
    • pp.78-83
    • /
    • 2014
  • To minimize the financial loss due to power facility malfunction, on-line diagnostic techniques are required to grasp any abnormal state of facilities in the live line as well as devices to diagnose abnormal states of power facility in an easy and prompt manner. This study aims to develop a portable UV detecting system by means of UV sensors for easier and efficient inspection of the degradation state of power facility in a long distance. Accordingly, it includes a simulation of corona discharges that may occur due to degradation of power facility and detection of ultraviolet pulse generation depending on the corona discharge intensity and measuring distance in application of UV sensors. Additionally, the optimal algorithm is determined for its application to the system's degradation diagnosis program based on the measured experiment data.

Classification of Operating State of Screw Decanter using Video-Based Optical Flow and LSTM Classifier

  • Lee, Sang-Hyeop;Wesonga, Sheilla;Park, Jang-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_1
    • /
    • pp.169-176
    • /
    • 2022
  • Prognostics and health management (PHM) is recently converging throughout the industry, one of the trending issue is to detect abnormal conditions at decanter centrifuge during water treatment facilities. Wastewater treatment operation produces corrosive gas which results failures on attached sensors. This scenario causes frequent sensor replacement and requires highly qualified manager's visual inspection while replacing important parts such as bearings and screws. In this paper, we propose anomaly detection by measuring the vibration of the decanter centrifuge based on the video camera images. Measuring the vibration of the screw decanter by applying the optical flow technique, the amount of movement change of the corresponding pixel is measured and fed into the LST M model. As a result, it is possible to detect the normal/warning/dangerous state based on LSTM classification. In the future work, we aim to gather more abnormal data in order to increase the further accuracy so that it can be utilized in the field of industry.

Monitoring System for Abnormal Cutting States in the Drilling Operation using Motor Current (모터전류를 이용한 드릴가공에서의 절삭이상상태 감시 시스템)

  • Kim, H.Y.;Ahn, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.98-107
    • /
    • 1995
  • The in-process detection of drill wear and breakage is one of the most importnat technical problems in unmaned machining system. In this paper, the monitoring system is developed to monitor abnormal drilling states such as drill breakage, drill wear and unstable cutting using motor current. Drill breakage is detected by level monitoring. Tool wear is classified by fuzzy pattern recognition. The key feature for classification of tool wear is the estimated flank wear which is calculated by the proposed flank wear model. The characteristic of the model is not sensitive to the variation of cutting conditions but is sensitive to drill wear state. Unstable cutting states due to the unsmooth chip disposal and the overload are monitored by the variance/mean ratio of spindle motor current. Variance/mean ratio also includes the information about the prediction of drill wear and drill breakage. The evaluation experiments have shown that the developed system works very well.

  • PDF

A Study on the Detection and Diagnosis of the Abnormal Machining Process Using Current Signal (전류신호를 이용한 이상가공상태 검출ㆍ진단에 관한 연구)

  • 서한원;유기현;정진용;서남섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.212-216
    • /
    • 1996
  • Recently, with the development of NC and CNC machine tools and the high labor wage, the cutting process requires the high speed and automatic system which uses industrial robots and the flexible manufacturing system(FMS) that combines several machine tools. In this system, the whole system can be influenced by just one of the machin tools. So it needs to detect a problem and to solve it immediately In in-process state. The monitoring system through measuring the motor current with current sensor has been attracting the attention of lots of researchers view of its low cost and flexibility. By using the pattern discriminant with the detected three-phase-current signal, that is, $I_{RMS}$, a system which can monitor and analyze abnormal machining process condition of the workpiece during the machining will be able to be developed in this research.h.

  • PDF

Identifying Process Capability Index for Electricity Distribution System through Thermal Image Analysis (열화상 이미지 분석을 통한 배전 설비 공정능력지수 감지 시스템 개발)

  • Lee, Hyung-Geun;Hong, Yong-Min;Kang, Sung-Woo
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.3
    • /
    • pp.327-340
    • /
    • 2021
  • Purpose: The purpose of this study is to propose a system predicting whether an electricity distribution system is abnormal by analyzing the temperature of the deteriorated system. Traditional electricity distribution system abnormality diagnosis was mainly limited to post-inspection. This research presents a remote monitoring system for detecting thermal images of the deteriorated electricity distribution system efficiently hereby providing safe and efficient abnormal diagnosis to electricians. Methods: In this study, an object detection algorithm (YOLOv5) is performed using 16,866 thermal images of electricity distribution systems provided by KEPCO(Korea Electric Power Corporation). Abnormality/Normality of the extracted system images from the algorithm are classified via the limit temperature. Each classification model, Random Forest, Support Vector Machine, XGBOOST is performed to explore 463,053 temperature datasets. The process capability index is employed to indicate the quality of the electricity distribution system. Results: This research performs case study with transformers representing the electricity distribution systems. The case study shows the following states: accuracy 100%, precision 100%, recall 100%, F1-score 100%. Also the case study shows the process capability index of the transformers with the following states: steady state 99.47%, caution state 0.16%, and risk state 0.37%. Conclusion: The sum of caution and risk state is 0.53%, which is higher than the actual failure rate. Also most transformer abnormalities can be detected through this monitoring system.

Peak Detection using Syntactic Pattern Recognition in the ECG signal (Syntactic 패턴인식에 의한 심전도 피이크 검출에 관한 연구)

  • Shin, Kun-Soo;Kim, Yong-Man;Yoon, Hyung-Ro;Lee, Ung-Ku;Lee, Myoung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.19-22
    • /
    • 1989
  • This paper represents a syntactic peak detection algorithm which detects peaks in the ECG signal. In the algorithm, the input waveform is linearly approximated by "split-and-merge" method, and then each line segment is symbolized with primitive set. The peeks in the symbolized input waveform are recognized by the finite-state automata, which the deterministic finite-state language is parsed by. This proposed algorithm correctly detects peaks in a normal ECG signal as well as in the abnormal ECG signal such as tachycardia and the contaminated signal with noise.

  • PDF

Cable anomaly detection driven by spatiotemporal correlation dissimilarity measurements of bridge grouped cable forces

  • Dong-Hui, Yang;Hai-Lun, Gu;Ting-Hua, Yi;Zhan-Jun, Wu
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.661-671
    • /
    • 2022
  • Stayed cables are the key components for transmitting loads in cable-stayed bridges. Therefore, it is very important to evaluate the cable force condition to ensure bridge safety. An online condition assessment and anomaly localization method is proposed for cables based on the spatiotemporal correlation of grouped cable forces. First, an anomaly sensitive feature index is obtained based on the distribution characteristics of grouped cable forces. Second, an adaptive anomaly detection method based on the k-nearest neighbor rule is used to perform dissimilarity measurements on the extracted feature index, and such a method can effectively remove the interference of environment factors and vehicle loads on online condition assessment of the grouped cable forces. Furthermore, an online anomaly isolation and localization method for stay cables is established, and the complete decomposition contributions method is used to decompose the feature matrix of the grouped cable forces and build an anomaly isolation index. Finally, case studies were carried out to validate the proposed method using an in-service cable-stayed bridge equipped with a structural health monitoring system. The results show that the proposed approach is sensitive to the abnormal distribution of grouped cable forces and is robust to the influence of interference factors. In addition, the proposed approach can also localize the cables with abnormal cable forces online, which can be successfully applied to the field monitoring of cables for cable-stayed bridges.