• 제목/요약/키워드: Abnormal Behavior Recognition

검색결과 26건 처리시간 0.026초

Abnormal Behavior Recognition Based on Spatio-temporal Context

  • Yang, Yuanfeng;Li, Lin;Liu, Zhaobin;Liu, Gang
    • Journal of Information Processing Systems
    • /
    • 제16권3호
    • /
    • pp.612-628
    • /
    • 2020
  • This paper presents a new approach for detecting abnormal behaviors in complex surveillance scenes where anomalies are subtle and difficult to distinguish due to the intricate correlations among multiple objects' behaviors. Specifically, a cascaded probabilistic topic model was put forward for learning the spatial context of local behavior and the temporal context of global behavior in two different stages. In the first stage of topic modeling, unlike the existing approaches using either optical flows or complete trajectories, spatio-temporal correlations between the trajectory fragments in video clips were modeled by the latent Dirichlet allocation (LDA) topic model based on Markov random fields to obtain the spatial context of local behavior in each video clip. The local behavior topic categories were then obtained by exploiting the spectral clustering algorithm. Based on the construction of a dictionary through the process of local behavior topic clustering, the second phase of the LDA topic model learns the correlations of global behaviors and temporal context. In particular, an abnormal behavior recognition method was developed based on the learned spatio-temporal context of behaviors. The specific identification method adopts a top-down strategy and consists of two stages: anomaly recognition of video clip and anomalous behavior recognition within each video clip. Evaluation was performed using the validity of spatio-temporal context learning for local behavior topics and abnormal behavior recognition. Furthermore, the performance of the proposed approach in abnormal behavior recognition improved effectively and significantly in complex surveillance scenes.

A Study of Video-Based Abnormal Behavior Recognition Model Using Deep Learning

  • Lee, Jiyoo;Shin, Seung-Jung
    • International journal of advanced smart convergence
    • /
    • 제9권4호
    • /
    • pp.115-119
    • /
    • 2020
  • Recently, CCTV installations are rapidly increasing in the public and private sectors to prevent various crimes. In accordance with the increasing number of CCTVs, video-based abnormal behavior detection in control systems is one of the key technologies for safety. This is because it is difficult for the surveillance personnel who control multiple CCTVs to manually monitor all abnormal behaviors in the video. In order to solve this problem, research to recognize abnormal behavior using deep learning is being actively conducted. In this paper, we propose a model for detecting abnormal behavior based on the deep learning model that is currently widely used. Based on the abnormal behavior video data provided by AI Hub, we performed a comparative experiment to detect anomalous behavior through violence learning and fainting in videos using 2D CNN-LSTM, 3D CNN, and I3D models. We hope that the experimental results of this abnormal behavior learning model will be helpful in developing intelligent CCTV.

Real-time video Surveillance System Design Proposal Using Abnormal Behavior Recognition Technology

  • Lee, Jiyoo;Shin, Seung-Jung
    • International journal of advanced smart convergence
    • /
    • 제9권4호
    • /
    • pp.120-123
    • /
    • 2020
  • The surveillance system to prevent crime and accidents in advance has become a necessity, not an option in real life. Not only public institutions but also individuals are installing surveillance cameras to protect their property and privacy. However, since the installed surveillance camera cannot be monitored for 24 hours, the focus is on the technology that tracks the video after an accident occurs rather than prevention. In this paper, we propose a system model that monitors abnormal behaviors that may cause crimes through real-time video, and when a specific behavior occurs, the surveillance system automatically detects it and responds immediately through an alarm. We are a model that analyzes real-time images from surveillance cameras and uses I3D models from analysis servers to analyze abnormal behavior and deliver notifications to web servers and then to clients. If the system is implemented with the proposed model, immediate response can be expected when a crime occurs.

Feature Selection for Abnormal Driving Behavior Recognition Based on Variance Distribution of Power Spectral Density

  • Nassuna, Hellen;Kim, Jaehoon;Eyobu, Odongo Steven;Lee, Dongik
    • 대한임베디드공학회논문지
    • /
    • 제15권3호
    • /
    • pp.119-127
    • /
    • 2020
  • The detection and recognition of abnormal driving becomes crucial for achieving safety in Intelligent Transportation Systems (ITS). This paper presents a feature extraction method based on spectral data to train a neural network model for driving behavior recognition. The proposed method uses a two stage signal processing approach to derive time-saving and efficient feature vectors. For the first stage, the feature vector set is obtained by calculating variances from each frequency bin containing the power spectrum data. The feature set is further reduced in the second stage where an intersection method is used to select more significant features that are finally applied for training a neural network model. A stream of live signals are fed to the trained model which recognizes the abnormal driving behaviors. The driving behaviors considered in this study are weaving, sudden braking and normal driving. The effectiveness of the proposed method is demonstrated by comparing with existing methods, which are Particle Swarm Optimization (PSO) and Convolution Neural Network (CNN). The experiments show that the proposed approach achieves satisfactory results with less computational complexity.

행동 패턴 기반 범죄 예측 모델 연구 (Crime prediction Model with Moving Behavior pattern)

  • 최종원;최지현;윤용익
    • 한국위성정보통신학회논문지
    • /
    • 제11권1호
    • /
    • pp.55-57
    • /
    • 2016
  • 본 논문에서는 CCTV 기반의 행동인식과 ConvexHull을 이용한 손의 패턴 인지를 통한 이상행동을 판단하는 알고리즘을 제시하고 있다. CCTV를 이용한 기존 범죄 예방에는 주로 얼굴 인식이 쓰인다. 이는 화면에 보이는 얼굴과 기존 범죄자와 수배자의 얼굴 정보를 대조하여 대상의 위험도를 판단하는 방식으로, 앞으로의 범죄행동 예측에는 어려움이 따른다. 따라서 보다 다양한 상황을 예측하기 위해 대상의 팔과 다리, 몸의 기울기 등의 움직임과 손의 패턴을 파악하여 이상행동을 판단한다. 몸의 움직임이 일반적인 행동을 벗어났다고 판단될 때 대상의 행동패턴을 파악하여 폭력과 납치 등의 행동패턴과 비교하여 범죄를 예측할 수 있다.

보행자의 검출 및 추적을 기반으로 한 실시간 이상행위 분석 시스템 (Real-time Abnormal Behavior Analysis System Based on Pedestrian Detection and Tracking)

  • 김도훈;박상현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.25-27
    • /
    • 2021
  • 최근 딥러닝 기술의 발전으로 CCTV 카메라를 통해 획득한 영상 정보에서 객체의 이상행동을 분석하기 위한 컴퓨터 비전 기반 AI 기술들이 연구되었다. 위험 지역이나 보안 지역에는 범죄 예방 및 경계 감시를 위해 감시카메라가 설치되어 있는 경우가 다수 존재한다. 이러한 이유로 기업들에서는 감시카메라 환경에서 침입, 배회, 낙상, 폭행 같은 주요한 상황을 판단하기 위한 연구들이 진행되고 있다. 본 논문에서는 객체 검출 및 추적 방법을 사용한 실시간 이상 행위 분석 알고리즘을 제안한다.

  • PDF

노인 홈 케어를위한 CNN 기반의 비정상 인간 활동 인식 시스템 (Abnormal Human Activity Recognition System Based on CNN For Elderly Home Care)

  • 아레주;이효종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.542-544
    • /
    • 2019
  • Changes in a person's health affect one's lifestyle and work activities. According to the World Health Organization (WHO), abnormal activity is growing faster in people aged 60 or more than any other age group in almost every country. This trend steadily continues and expected to increase further in the near future. Abnormal activity put these people at high risk of expected incidents since most of these people live alone. Human abnormal activity analysis is a challenging, useful and interesting problem among the researchers and its particularly crucial task in life and health care areas. In this paper, we discuss the problem of abnormal activities of old people lives alone at home. We propose Convolutional Neural Network (CNN) based model to detect the abnormal behaviors of elderlies by utilizing six simulated action data from daily life actions.

CCTV에서 폭력 행위 감지 시스템 연구 (A Study on a Violence Recognition System with CCTV)

  • 심영빈;박화진
    • 디지털콘텐츠학회 논문지
    • /
    • 제16권1호
    • /
    • pp.25-32
    • /
    • 2015
  • 학교폭력 및 성폭력 등의 범죄가 증가되어감에 따라 범인 검거에 있어서 CCTV에 대한 의존도가 높아지고 있다. 그러나 항상 사람 노동력으로 감시하기에는 경제력 및 인력의 한계가 있어 최근에는 지능형 보안 시스템으로 관심이 높아지고 있다. 따라서 기존에 연구한 객체 행동 인식 기법을 확장하여 본 연구에서는 CCTV에 획득되는 영상으로부터 2~3 객체간의 폭력 행위를 감지하는 시스템을 제안한다. 배경영상과의 차연산 및 모폴로지를 통해 객체를 검출하고 인식하여 추적한다. 폭력행위의 특징을 이용하여 폭력행위 판단 근거를 제시하였다. 더욱이, 여러 폭력 상황에 대한 측정을 통해 보다 객관적인 판단 메트릭 임계값을 도출하였다. 이 값을 바탕으로 폭력 행위 인식 실험을 진행한 결과 80% 이상의 인식 성공률을 보였으며, 향후연구로 다수 군중이 있는 상황 등에서의 이상행위 감지 시스템에 대한 연구가 남아있다.

AlphaPose를 활용한 LSTM(Long Short-Term Memory) 기반 이상행동인식 (LSTM(Long Short-Term Memory)-Based Abnormal Behavior Recognition Using AlphaPose)

  • 배현재;장규진;김영훈;김진평
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권5호
    • /
    • pp.187-194
    • /
    • 2021
  • 사람의 행동인식(Action Recognition)은 사람의 관절 움직임에 따라 어떤 행동을 하는지 인식하는 것이다. 이를 위해서 영상처리에 활용되는 컴퓨터 비전 태스크를 활용하였다. 사람의 행동인식은 딥러닝과 CCTV를 결합한 안전사고 대응서비스로서 안전관리 현장 내에서도 적용될 수 있다. 기존연구는 딥러닝을 활용하여 사람의 관절 키포인트 추출을 통한 행동인식 연구가 상대적으로 부족한 상태이다. 또한 안전관리 현장에서 작업자를 지속적이고 체계적으로 관리하기 어려운 문제점도 있었다. 본 논문에서는 이러한 문제점들을 해결하기 위해 관절 키포인트와 관절 움직임 정보만을 이용하여 위험 행동을 인식하는 방법을 제안하고자 한다. 자세추정방법(Pose Estimation)의 하나인 AlphaPose를 활용하여 신체 부위의 관절 키포인트를 추출하였다. 추출된 관절 키포인트를 LSTM(Long Short-Term Memory) 모델에 순차적으로 입력하여 연속적인 데이터로 학습을 하였다. 행동인식 정확률을 확인한 결과 "누워있기(Lying Down)" 행동인식 결과의 정확도가 높음을 확인할 수 있었다.

Design and Evaluation of a Rough Set Based Anomaly Detection Scheme Considering the Age of User Profiles

  • Bae, Ihn-Han
    • 한국멀티미디어학회논문지
    • /
    • 제10권12호
    • /
    • pp.1726-1732
    • /
    • 2007
  • The rapid proliferation of wireless networks and mobile computing applications has changed the landscape of network security. Anomaly detection is a pattern recognition task whose goal is to report the occurrence of abnormal or unknown behavior in a given system being monitored. This paper presents an efficient rough set based anomaly detection method that can effectively identify a group of especially harmful internal attackers - masqueraders in cellular mobile networks. Our scheme uses the trace data of wireless application layer by a user as feature value. Based on this, the used pattern of a mobile's user can be captured by rough sets, and the abnormal behavior of the mobile can be also detected effectively by applying a roughness membership function with the age of the user profile. The performance of the proposed scheme is evaluated by using a simulation. Simulation results demonstrate that the anomalies are well detected by the proposed scheme that considers the age of user profiles.

  • PDF