부정맥 심전도 신호에는 전도장애 및 발생부위에 따라 다양한 비정상 모양을 띄는 특이심박들이 포함되어 있고, 이들 특이심박은 부정맥 등의 심장질환을 진단하는데 있어 매우 중요하다. 본 논문에서는 심실질환에 관련한 PVC 특이심박 검출 알고리즘을 제안한다. PVC 특이심박에서는 심전도 신호의 구성요소 가운데 QRS 군의 왜곡이 발생하는 특징이 있다. 따라서 QRS 군의 왜곡 정도에 따라 PVC 특이심박을 검출할 수 있다. 먼저 R-peak의 전위, 첨도, 주기를 사용하여 QRS 군의 왜곡을 정량화하고, 이들 값들의 평균과 표준편차를 이용하여 정상 심박과의 왜곡의 정도에 따라 PVC 특이심박을 검출한다. 제안한 알고리즘은 MIT-BIH 부정맥 데이터베이스 중 심실질환과 관계되는 AAMI-V class 타입의 특이심박을 평균 98% 이상을 검출할 수 있었다.
심전도 신호는 개인에 따라 형태와 특징이 다양하므로, 하나의 신경망으로는 분류하기가 어렵다. 주어진 데이터를 직접적으로 분류하는 것은 어려우나, 대응되는 정상 데이터가 있을 경우, 이를 비교하여 정상 및 비정상을 분류하는 것은 상대적으로 쉽고 정확하다. 본 논문에서는 템플릿 군을 이용하여 대표정상심박 정보를 획득하고, 이를 입력 심박에 결합함으로써 심박을 분류한다. 결합된 심박을 영상화한 후, 학습 및 분류를 진행하여, 하나의 신경망으로도 다양한 레코드의 비정상심박을 검출이 가능하였다. 특히, GoogLeNet, ResNet, DarkNet 등 다양한 신경망에 대해서도 비교학습 기법을 적용한 결과, 모두 우수한 검출성능을 가졌으며, GoogLeNet의 경우 99.72%의 민감도로, 실험에 사용된 신경망 중 가장 우수한 성능을 가졌음을 확인하였다.
The more people use ambulatory electrocardiogram(ECG) for arrhythmia detection, the more researchers report the automatic classification algorithms. Most of the previous studies don't consider the un-balanced data distribution. Even in patients, there are much more normal beats than abnormal beats among the data from 24 hours. To solve this problem, the hierarchical classification using 21 features was adopted for arrhythmia abnormal beat detection. The features include R-R intervals and data to describe the morphology of the wave. To validate the algorithm, 44 non-pacemaker recordings from physionet were used. The hierarchical classification model with 2 stages on domain knowledge was constructed. Using our suggested method, we could improve the performance in abnormal beat classification from the conventional multi-class classification method. In conclusion, the domain knowledge based hierarchical classification is useful to the ECG beat classification with unbalanced data distribution.
조기심실수축(PVC)은 가장 보편적인 부정맥으로 심실세동, 심실빈맥 등과 같은 위험한 상황을 유발할 수 있는 가능성을 가지고 있기 때문에 이의 조기 검출은 매우 중요하다. 하지만 ECG 신호의 개인 차이가 있음에도 불구하고, 일반적인 신호의 판단 규칙에 따라 진단을 수행함으로써 성능하락이 나타날 수 밖에 없다. 이러한 문제점을 극복하기 위해서는 개인에 따른 이상 신호를 검출한 후 다양한 QRS 패턴을 고려하여 PVC를 분류할 수 있는 알고리즘이 필요하다. 본 연구에서는 개인별 이상신호 검출과 QRS 패턴 변화에 따른 PVC 분류 기법을 제안한다. 이를 위해 전 처리 과정과 차감기법을 통해 R파를 검출하였으며, 개인별 이상신호를 검출하였다. 이후 QRS 패턴에 따른 QS 간격과 R파의 진폭 변화율에 따라 PVC를 분류하였다. 제안한 알고리즘의 이상 신호 검출 및 PVC 분류 성능을 평가하기 위해서 MIT-BIH 부정맥 데이터베이스를 사용하였다. 성능평가 결과, 이상 신호 검출률은 98.33%, PVC는 각각 94.46%의 평균 분류율을 나타내었다.
조기심실수축(PVC)은 가장 보편적인 부정맥으로 심실세동, 심실빈맥 등과 같은 위험한 상황을 유발할 수 있는 가능성을 가지고 있기 때문에 이의 조기 검출은 매우 중요하다. 특히 일반인들의 건강상태를 지속적으로 모니터링 해야 하는 헬스케어 시스템에서는 이를 위한 심전도 신호의 실시간 처리가 필요하다. 즉, 최소한의 연산량으로 정확한 R파를 검출하고, 대상 환자의 특징을 파악하여 PVC를 분류할 수 있는 적합한 알고리즘의 설계가 필요하다. 따라서 본 연구에서는 PVC 실시간 분류를 위한 환자 적응형 패턴 매칭 기법을 제안한다. 이를 위해 전 처리 과정과 적응 가변형 문턱 값과 윈도우를 통해 R파를 검출하였으며, 검출 대상에 따른 정상신호 군을 선별하고 이를 벗어나는 신호를 이상신호로 분류하기 위해 해쉬 함수를 통한 패턴 매칭 기법을 적용하였다. 제안한 알고리즘의 R파 검출 및 정상신호 분류 성능을 평가하기 위해서 MIT-BIH 부정맥 데이터베이스를 사용하였다. 성능평가 결과, R파는 평균 99.33%, 이상신호 분류에 대한 에러율은 0.32%로 나타났다.
In this paper, we proposed a ventricular fibrillation detection algorithm based on wavelet transform and artificial neural network. we selected RR intervals, the 6th and 7th wavelet coefficients(D6, D7) as features for classifying ventricular fibrillation. To evaluate the performance of the proposed algorithm, we compared the result of the proposed algorithm with that of fuzzy inference and fuzzy-neural network. MIT-BIH Arrhythmia database, Creighton University Ventricular Tachyarrhythmia database and MIH-BIH Malignant Ventricular Arrhythmia database were used as test and learning data. Among the algorithms, the proposed algorithm showed that the classification rate of normal and abnormal beat was sensitivity(%) of 96.10 and predictive positive value(%) of 99.07, and that of ventricular fibrillation was sensitivity(%) of 99.45. Finally. the proposed algorithm showed good performance compared to two other methods.
최근 들어 실시간 원격 ECG모니터링 시스템에 대한 수요가 늘어가고 있으며 가입자의 증가와 더불어 실시간 모니터링 시스템의 자동화에 대한 필요성이 대두되고 있다. 비정상적인 ECG 비트의 자동검출은 이러한 실시간 원격 ECG모니터링 시스템의 성공적인 상업화를 위해서는 반드시 필요한 요소기술이다. 본 논문에서는 이러한 점에 착안하여 QRS 폭(width)과 RR interval의 패턴을 이용한 효율적인 비정상적 ECG 비트 자동검출알고리듬을 제안하였다. 기존에는 주로 ECG 비트의 상세한 분류에 대해서 많은 연구가 이루어졌으나 이러한 방법들은 분류 오류가 많고 주변 환경이 변화함에 따라서 분류성능의 변동성이 심하다는 단점이 있었다. 또한 정확한 ECG 비트 분류를 위해서는 충분한 양의 훈련데이터를 필요로 하며 특히 분류시에 많은 계산량을 필요로 한다는 문제점도 있었다. 그러나 자동화된 원격 ECG모니터링 시스템을 위해서는 ECG 비트의 세세한 분류 보다는 비트의 정상여부판단이 더 중요하다. 이러한 점에 착안하여 본 논문에서는 ECG 신호의 비정상적인 비트중에서도 가장 빈번이 발생하는 VEBs(Ventricular ectopic beats) 비트의 검출을 시도하였고 제안된 알고리듬을 MIT-BIH 부정맥 데이터베이스에 적용한 결과 만족스러운 VEBs 바트 검출성능을 얻을 수 있었다.
심전도(electrocardiography, ECG)는 심장박동을 할 때, 발생하는 탈분극과 재분극으로 심장의 전위변화를 시간의 흐름에 따라 파형으로 표현한 것이다. 의료기관에서는 심전도신호를 이용하여 환자의 심장질환을 진단한다. 일반적으로 사람의 정상적인 심장박동수는 1분에 60-100회 이다. 만약 정상적인 심장박동 수보다 느리거나 빠르다면 부정맥이라고 한다. 본 논문에서는 심전도신호에서 R-peak를 검출하여, R-R 간격을 구하고 부정맥 중에 서맥(bradycardia)과 빈맥(tachycardia) 구간을 검출하는 알고리즘을 제안하고 모의실험을 하였다.
본 논문에서는 딥러닝 모델을 이용하여 모바일 기기의 심전도 신호 측정 데이터를 분류한다. 비정상 심장박동을 높은 정확도로 분류하기 위해 딥러닝 모델의 구성 요소 세 가지를 선정하고 요소의 조건 변화에 따른 분류 정확도를 비교한다. 심전도 신호 데이터의 특징을 스스로 추출할 수 있는 CNN 모델을 적용하고 모델을 구성하는 모델의 깊이, 최적화 방법, 활성화 함수의 조건을 변경하여 총 48개의 조합의 성능을 비교한다. 가장 높은 정확도를 보이는 조건의 조합을 도출한 결과 컨볼루션 레이어 19개, 최적화 방법 SGD, 활성화 함수 Mish를 적용하였을 때 정확도 97.88%로 모든 조합 중 가장 높은 분류 정확도를 얻었다. 이 실험에서 CNN을 활용한 1-채널 심전도 신호의 특징 추출과 비정상 박동 검출의 적합성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.