• Title/Summary/Keyword: Abiotic factors.

Search Result 183, Processing Time 0.034 seconds

Electricity Generation by Microbial Fuel Cell Using Microorganisms as Catalyst in Cathode

  • Jang, Jae Kyung;Kan, Jinjun;Bretschger, Orianna;Gorby, Yuri A.;Hsu, Lewis;Kim, Byung Hong;Nealson, Kenneth H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1765-1773
    • /
    • 2013
  • The cathode reaction is one of the most seriously limiting factors in a microbial fuel cell (MFC). The critical dissolved oxygen (DO) concentration of a platinum-loaded graphite electrode was reported as 2.2 mg/l, about 10-fold higher than an aerobic bacterium. A series of MFCs were run with the cathode compartment inoculated with activated sludge (biotic) or not (abiotic) on platinum-loaded or bare graphite electrodes. At the beginning of the operation, the current values from MFCs with a biocathode and abiotic cathode were $2.3{\pm}0.1$ and $2.6{\pm}0.2mA$, respectively, at the air-saturated water supply in the cathode. The current from MFCs with an abiotic cathode did not change, but that of MFCs with a biotic cathode increased to 3.0 mA after 8 weeks. The coulomb efficiency was 59.6% in the MFCs with a biotic cathode, much higher than the value of 15.6% of the abiotic cathode. When the DO supply was reduced, the current from MFCs with an abiotic cathode decreased more sharply than in those with a biotic cathode. When the respiratory inhibitor azide was added to the catholyte, the current decreased in MFCs with a biotic cathode but did not change in MFCs with an abiotic cathode. The power density was higher in MFCs with a biotic cathode ($430W/m^3$ cathode compartment) than the abiotic cathode MFC ($257W/m^3$ cathode compartment). Electron microscopic observation revealed nanowire structures in biofilms that developed on both the anode and on the biocathode. These results show that an electron-consuming bacterial consortium can be used as a cathode catalyst to improve the cathode reaction.

Influence of Weather Factors on the Incidence of the Mulberry Aleyrodid, Dialeuropora decempuncta (Quaintance and Baker) and Their Relation to Yield Loss

  • Bandyopadhyay U. K.;Santhakumar M. V.;Sahu P. K.;Saratchandra B.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.11 no.2
    • /
    • pp.129-133
    • /
    • 2005
  • The seasonal occurrence and influence of abiotic factors viz., maximum and minimum temperature, maximum and minimum humidity and rainfall on population fluctuation of aleyrodid, Dialeuropora decempuncta on a evolved mulberry (Morus alba L.) variety known to be susceptible to aleyrodid infestation was assessed during the period from 1999 - 2001 in twenty-five villages under nine blocks of Malda district of West Bengal. The results indicate that the aleyrodid population is practically very low or absent during January to June and thereafter increases gradually. The increase in population of various stages of aleyrodid is significantly correlated with increase in previous 7 days of average maximum relative humidity.

The Rapid Apple Decline Phenomenon: Current Status and Expected Associated Factors in Korea

  • Seung-Yeol Lee;Kari A. Peter;Kallol Das;Avalos-Ruiz Diane;Hee-Young Jung
    • The Plant Pathology Journal
    • /
    • v.39 no.6
    • /
    • pp.538-547
    • /
    • 2023
  • Rapid apple decline (RAD) is a complex phenomenon affecting cultivated apple trees and particularly dwarf rootstocks on grafted young apple trees. Since its first appearance in the United States, RAD has been reported worldwide, for example in Canada, South America, Africa, and Asia. The phenomenon has also been observed in apple orchards in Korea, and it presented similar symptoms regardless of apple cultivar and cultivation period. Most previous reports have suggested that RAD may be associated with multiple factors, including plant pathogenic infections, abiotic stresses, environmental conditions, and the susceptibility of trees to cold injury during winter. However, RAD was observed to be more severe and affect more frequently apple trees on the Malling series dwarf rootstock. In this study, we reviewed the current status of RAD worldwide and surveyed biotic and abiotic factors that are potentially closely related to it in Korea.

Edge effects confirmed at the clear-cut area of Korean red pine forest in Uljin, eastern Korea

  • Jung, Song Hie;Lim, Chi Hong;Kim, A Reum;Woo, Dong Min;Kwon, Hye Jin;Cho, Yong Chan;Lee, Chang Seok
    • Journal of Ecology and Environment
    • /
    • v.41 no.10
    • /
    • pp.290-301
    • /
    • 2017
  • Background: Forest edges create distinctive ecological space as adjacent constituents, which distinguish between different ecosystems or land use types. These edges are made by anthropogenic or natural disturbance and affects both abiotic and biotic factors gradually. This study was carried out to assess edge effects on disturbed landscape at the pine-dominated clear-cut area in a genetic resources reserve in Uljin-gun, eastern Korea. This study aims to estimate the distance of edge influence by analyzing changes of abiotic and biotic factors along the distance from forest edge. Further, we recommend forest management strategy for sustaining healthy forest landscapes by reducing effects of deforestation. Results: Distance of edge effect based on the abiotic factors varied from 8.2 to 33.0 m. The distances were the longest in $Mg^{2+}$ content and total nitrogen, $K^+$, $Ca^{2+}$ contents, canopy openness, light intensity, air humidity, $Na^+$ content, and soil temperature followed. The result based on biotic factors varied from 6.8 to 29.5 m, coverage of tree species in the herb layer showed the longest distance and coverage of shrub plant in the herb layer, evenness, species diversity, total coverage of herb layer, and species richness followed. As the result of calculation of edge effect by synthesizing 26 factors measured in this study, the effect was shown from 11.0 m of the forest interior to 22.4 m of the open space. In the result of stand ordination, Rhododendron mucronulatum, R. schlippenbachii, and Fraxinus sieboldiana dominated arrangement of forest interior sites and Quercus mongolica, Vitis amurensis, and Rubus crataegifolius dominated spatial distribution of the open area plots. Conclusions: Forest interior habitat lies within the influence of both abiotic and biotic edge effects. Therefore, we need a forest management strategy to sustain the stability of the plant and further animal communities that depend on its stable conditions. For protecting forest interior, we recommend selective logging as a harvesting method for minimizing edge effects by anthropogenic disturbance. In fact, it was known that selective logging contributes to control light availability and wind regime, which are key factors affecting microclimate. In addition, ecological restoration applying protective planting for the remaining forest in the clear-cut area could contribute to prevent continuous disturbance in forest interior.

Development of Stress-tolerant Crop Plants

  • Park, Hyung-In;Kang, Jung-Youn;Sohn, Hee-Kyung;Kim, Soo-Young
    • Journal of Plant Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.53-58
    • /
    • 2002
  • Adverse environmental conditions such as drought, high salt and cold/freezing are major factors that reduces crop productivity worldwide. According to a survey, 50-80% of the maximum potential yield is lost by these "environmental or abiotic stresses", which is approximately ten times higher than the loss by biotic stresses. Thus, improving stress-tolerance of crop plants is an important way to improve agricultural productivity, In order to develop such stress-tolerant crop plants, we set out to identify key stress signaling components that can be used to develop commercially viable crop varieties with enhanced stress tolerance. Our primary focus so far has been on the identification of transcription factors that regulate stress responsive gene expression, especially those involved in ABA-mediated stress response. Be sessile, plants have the unique capability to adapt themselves to the abiotic stresses. This adaptive capability is largely dependent on the plant hormone abscisic acid (ABA), whose level increases under various stress conditions, triggering adaptive response. Central to the response is ABA-regulated gene expression, which ultimately leads to physiological changes at the whole plant level. Thus, once identified, it would be possible to enhance stress tolerance of crop plants by manipulating the expression of the factors that mediate ABA-dependent stress response. Here, we present our work on the isolation and functional characterization of the transcription factors.n factors.

Biotic and Abiotic Factors Affecting Homoharringtonine Contents of Cephalotaxus koreana Nakai (개비자나무의 homoharringtonine 함량에 영향을 미치는 생물 및 무생물적 환경인자)

  • Jung, Myung-Suk;Hyun, Jung-Oh;Lee, Uk;Baik, Eul-Sun
    • Korean Journal of Plant Resources
    • /
    • v.23 no.2
    • /
    • pp.172-178
    • /
    • 2010
  • This study was carried out to investigate abiotic and biotic environmental factors affecting homoharringtonine (HHT) contents of Cephalotaxus koreana, whereby, to provide basic information of high value-added industry production of HHT as a promising anti-cancer agent. For correlation between abiotic environmental factors (soil moisture, soil pH, habitat density and temperature) and HHT contents, the contents were highly correlated with soil moisture (0.77) and soil pH (-0.68). For multiple regression analysis of relationship between abiotic environmental factors (soil moisture and soil pH) and HHT contents, soil moisture appeared to be strongly affecting the contents relatively due to being significant at only its regression coefficient ($26.48^{***}$). For the effect of biotic environmental factors (damage index) affecting HHT contents, the contents was quadratic with equation of $H=278.23+1242D-398.87D^2$, also, damage index had strong effect on the contents. Finally, for the result of the most influencing an environmental factor on HHT contents, both damage index and soil moisture were suitable in second polynomial regression, also, damage index ($R^2=0.73^{***}$) was turned out to be more influencing factor than soil moisture ($R^2=0.67^{**}$) on HHT contents relatively. Therefore, we predict that HHT contents in the trees of Cephalotaxus koreana is produced as a chemical defense mechanism triggered by a stress-related damage of fungi or insects.

Screening of Multiple Abiotic Stress-Induced Genes in Italian Ryegrass leaves

  • Lee, Sang-Hoon;Rahman, Md. Atikur;Kim, Kwan-Woo;Lee, Jin-Wook;Ji, Hee Chung;Choi, Gi Jun;Song, Yowook;Lee, Ki-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.3
    • /
    • pp.190-195
    • /
    • 2018
  • Cold, salt and heat are the most critical factors that restrict full genetic potential, growth and development of crops globally. However, clarification of genes expression and regulation is a fundamental approach to understanding the adaptive response of plants under unfavorable environments. In this study, we applied an annealing control primer (ACP) based on the GeneFishing approach to identify differentially expressed genes (DEGs) in Italian ryegrass (cv. Kowinearly) leaves under cold, salt and heat stresses. Two-week-old seedlings were exposed to cold ($4^{\circ}C$), salt (NaCl 200 mM) and heat ($42^{\circ}C$) treatments for six hours. A total 8 differentially expressed genes were isolated from ryegrass leaves. These genes were sequenced then identified and validated using the National Center for Biotechnology Information (NCBI) database. We identified several promising genes encoding light harvesting chlorophyll a/b binding protein, alpha-glactosidase b, chromosome 3B, elongation factor 1-alpha, FLbaf106f03, Lolium multiflorum plastid, complete genome, translation initiation factor SUI1, and glyceraldehyde-3-phosphate dehydrogenase. These genes were potentially involved in photosynthesis, plant development, protein synthesis and abiotic stress tolerance in plants. However, this study provides new insight regarding molecular information about several genes in response to multiple abiotic stresses. Additionally, these genes may be useful for enhancement of abiotic stress tolerance in fodder crops as well a crop improvement under unfavorable environmental conditions.

Increased Abiotic Stress Tolerance by Over-expressing OsABF2 in Transgenic Arabidopsis thaliana (OsABF2를 과발현시킨 애기장대에서 비생물학적 스트레스에 대한 내성 증가)

  • Park, Phun Bum
    • Journal of Life Science
    • /
    • v.22 no.11
    • /
    • pp.1515-1522
    • /
    • 2012
  • The phytohormone abscisic acid (ABA) plays an important role in the adaptive response of plants to abiotic stresses. ABA also regulates many important processes, including seed dormancy, germination, inhibition of cell division, and stomatal closure. OsABF2 (Oryza sativa ABRE binding factor2) is one of the bZIP type transcription factors, which are involved in abiotic stress response and ABA signaling in rice. Expression of OsABF2 is induced by ABA and various stress treatments. Findings show that survival rates of OsABF2 over-expressing Arabidopsis lines were increased under drought, salt, and heat stress conditions. The germination ratio of OsABF2 over-expressing Arabidopsis lines was decreased in the presence of ABA. Results indicate that OsABF2 over-expressing Arabidopsis lines have enhanced abiotic stress tolerance and have increased ABA sensitivity.

Advances in the molecular breeding of forage crops for abiotic stress tolerance

  • Alam, Iftekhar;Kim, Kyung-Hee;Sharmin, Shamima Akhtar;Kim, Yong-Goo;Lee, Byung-Hyun
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.425-441
    • /
    • 2010
  • Forages are the backbone of sustainable agriculture. They includes a wide variety of plant species ranging from grasses, such as tall fescue and bermudagrass, to herbaceous legumes, such as alfalfa and white clover. Abiotic stresses, especially salinity, drought, temperature extremes, high photon irradiance, and levels of inorganic solutes, are the limiting factors in the growth and productivity of major cultivated forage crops. Given the great complexity of forage species and the associated difficulties encountered in traditional breeding methods, the potential from molecular breeding in improving forage crops has been recognized. Plant engineering strategies for abiotic stress tolerance largely rely on the gene expression for enzymes involved in pathways leading to the synthesis of functional and structural metabolites, proteins that confer stress tolerance, or proteins in signaling and regulatory pathways. Genetic engineering allows researchers to control timing, tissue-specificity, and expression level for optimal function of the introduced genes. Thus, the use of either a constitutive or stress-inducible promoter may be useful in certain cases. In this review, we summarize the recent progress made towards the development of transgenic forage plants with improved tolerance to abiotic stresses.

Abiotic effects on calling phenology of three frog species in Korea

  • Yoo, Eun-Hwa;Jang, Yi-Kweon
    • Animal cells and systems
    • /
    • v.16 no.3
    • /
    • pp.260-267
    • /
    • 2012
  • Calling behavior is often used to infer breeding patterns in anurans. We studied the seasonal and diel calling activities of anuran species in a wetland in central Korea to determine the calling season and to evaluate the effects of abiotic factors on male calling. Acoustic monitoring was used in which frog calls were recorded for a full day, once a week, throughout an entire year. Using acoustic monitoring, we identified three frog species in the study site. Males of Rana dybowskii called in late winter and early spring; we thus classified this species as a winter/spring caller. The results of binary logistic regression showed that temperature, relative humidity, and 1-day lag rainfall were significant factors for male calling in R. dybowskii. Temperature and relative humidity were important factors for the calling activity of R. nigromaculata, whereas 24-h rainfall and 1-day lag rainfall were not significant. Thus, we determined R. nigromaculata to be a summer caller independent of weather. In Hyla japonica, relative humidity, 24-h rainfall, and 1- day lag rainfall were significant for male calling, suggesting that this species is a summer caller dependent on local rain.