• Title/Summary/Keyword: Abiotic anode

Search Result 2, Processing Time 0.014 seconds

Impedance and Thermodynamic Analysis of Bioanode, Abiotic Anode, and Riboflavin-Amended Anode in Microbial Fuel Cells

  • Jung, Sok-Hee;Ahn, Young-Ho;Oh, Sang-Eun;Lee, Jun-Ho;Cho, Kyu-Taek;Kim, Young-Jin;Kim, Myeong-Woon;Shim, Joon-Mok;Kang, Moon-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3349-3354
    • /
    • 2012
  • Understanding exoelectrogenic reactions of the bioanode is limited due to its complexity and the absence of analytics. Impedance and thermodynamics of bioanode, abiotic anode, and riboflavin-amended anode were evaluated. Activation overpotential of the bioanode was negligible compared with that of the abiotic anode. Impedance spectroscopy shows that the bioanode had much lower charge transfer resistance and higher capacitance than the abiotic anode in low frequency reaction. In high frequency reaction, the impedance parameters, however, were relatively similar between the bioanode and the abiotic anode. At open-circuit impedance spectroscopy, a high frequency arc was not detected in the abiotic anode in Nyquist plot. Addition of riboflavin induced a phase angle shift and created curvature in high-frequency arc of the abiotic anode, and it also drastically changed impedance spectra of the bioanode.

Electricity Generation by Microbial Fuel Cell Using Microorganisms as Catalyst in Cathode

  • Jang, Jae Kyung;Kan, Jinjun;Bretschger, Orianna;Gorby, Yuri A.;Hsu, Lewis;Kim, Byung Hong;Nealson, Kenneth H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1765-1773
    • /
    • 2013
  • The cathode reaction is one of the most seriously limiting factors in a microbial fuel cell (MFC). The critical dissolved oxygen (DO) concentration of a platinum-loaded graphite electrode was reported as 2.2 mg/l, about 10-fold higher than an aerobic bacterium. A series of MFCs were run with the cathode compartment inoculated with activated sludge (biotic) or not (abiotic) on platinum-loaded or bare graphite electrodes. At the beginning of the operation, the current values from MFCs with a biocathode and abiotic cathode were $2.3{\pm}0.1$ and $2.6{\pm}0.2mA$, respectively, at the air-saturated water supply in the cathode. The current from MFCs with an abiotic cathode did not change, but that of MFCs with a biotic cathode increased to 3.0 mA after 8 weeks. The coulomb efficiency was 59.6% in the MFCs with a biotic cathode, much higher than the value of 15.6% of the abiotic cathode. When the DO supply was reduced, the current from MFCs with an abiotic cathode decreased more sharply than in those with a biotic cathode. When the respiratory inhibitor azide was added to the catholyte, the current decreased in MFCs with a biotic cathode but did not change in MFCs with an abiotic cathode. The power density was higher in MFCs with a biotic cathode ($430W/m^3$ cathode compartment) than the abiotic cathode MFC ($257W/m^3$ cathode compartment). Electron microscopic observation revealed nanowire structures in biofilms that developed on both the anode and on the biocathode. These results show that an electron-consuming bacterial consortium can be used as a cathode catalyst to improve the cathode reaction.