• Title/Summary/Keyword: Abaqus

Search Result 1,395, Processing Time 0.023 seconds

Efficient Design of Gun-Tube Considering Inner Pressure of Bore (포강 내 압력을 고려한 효율적 포신 설계)

  • Eubin Kim;Gyubin Kim;Eun Gyo Park;Seok-Hwan Oh;Tae-Seong Roh;Jin Yeon Cho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.371-383
    • /
    • 2023
  • Artillery gun tube experiences very high pressure according to the blast of propellant charge. Therfore, it is essential to guarantee the structural safety of the gun tube. On the other hand, weight reduction of gun tube is also a crucial design factor since the agility of artillery vehicle directly leads to its survivability. In this line of thought, this work proposed an efficient design procedure which utilizes the convex combination of breech pressure and projectile base pressure time histories. Its efficiency is verified by comparing with other procedures. Other procedures utilize different computed max pressure rather than the convex combination design pressure. Additionally, a transient analysis is carried out considering the projectile movement and the corresponding pressure distribution through the newly developed ABAQUS user-subroutine. The analysis confirms the structural safety of the lightweight gun tube designed by the proposed method.

An Analytical Study on the Simplification of the Shape of PS Tendon Through the Optimization of Material Properties (재료 물성 최적화를 통한 PS 강연선의 형상 단순화에 관한 해석적 연구)

  • Do-Yeon Kim;Il-Young Jang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.555-561
    • /
    • 2024
  • This paper derives material properties of steel bars that simulate the distribution of stress and strain of prestressed tendons used in Prestressed concrete(PSC) girders and presents an optimal material model. ABAQUS software was used to establish the 3D solid model of the PSC girder and strand wire rope for a PS(Prestressed) tendon. Then the model of steel wire rope was imported into the Isight interface plugin directly through the ABAQUS and the Data Matching. In ABAQUS, the contact pairs were established, the models were meshed, the constraints were applied to solve the finite element model and an axial tension of 0.5m/s was loaded to analyze the stress and deformation distributions in the normal working range of the PS strand wire rope. In Data Matching, classical experimental data is fitted to the optimal material properties through finite element analysis and multi-objective optimization. The results show that the steel bar with optimal material properties presents a similar linear area and stress distribution with the PS tendon.

Study on Ultimate Behavior of Steel Transmission Tower with Residual Stress and Initial Imperfection (잔류응력과 초기변형을 고려한 송전철탑의 비선형 극한거동에 관한 해석적 연구)

  • Chang, Jin Won;Kim, Seung Jun;Park, Jong Sup;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.421-435
    • /
    • 2008
  • This paper presents an investigation on the ultimate behavior of a transmission tower using nonlinear analyses inconsideration of residual stress and initial imperfection. Main members, such as main post, horizontal member and diagonal member of the transmission tower were modeled using beam element. Moreover, submembers of the transmission tower were modeled using truss element. ABAQUS (2004) program was used to perform finite element analyses. Initial condition options of the ABAQUS program considering initial stress and imperfection were used in this study. Before performing the analysis of the total transmission tower, simple angle section models using beam or plate/shell element w ere investigated to verify the appropriateness of ABAQUS analysis models and options. According to the verification results, the beam element was used for nonlinear analyses of the transmission tower. From nonlinear analyses results, buckling failure was in the main member of the leg part because of ${P-{\triangle}}$ effect at that point. Also, this paper includes significant results to define real structural failure modes and quantitative values. This study should be used in the development of a reasonable and economic design method for transmission towers.

Seismic Rocking Response Analysis of 1/8 Scale Model for a Spent Fuel Storage Cask (사용후 연료 건식저장용기 1/8규모 축소모형 지진회전응답해석)

  • Lee J.H.;Seo K.S.;Koo G.H.;Cho C.H.;Choi B.I.;Lee H.Y.;Yeom S.H.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.383-389
    • /
    • 2005
  • This research is to develop a seismic response analysis method for a spent fuel storage cask. FEM model is built for the test model of 1/8 scale spent fuel dry storage cask using available 3D contact conditions in ABAQUS/Explicit. Input load for this analysis os a seismic wave of El-centro earthquake, and the friction and damping coefficients in the analysis condition we obtained from the test result. Penalty and kinematic contact methods of ABAQUS are used for mechanical contact formulation. The analysis method was verified for rocking angle obtained by seismic response tests. The kinematic contact method with an adequate normal contact stiffness showed a good agreement with tests.

  • PDF

Linear Behavior Analysis and Stability Assessment of CFTA Girder (CFTA거더의 선형거동 분석 및 안정성 평가)

  • Jeong, Min-Chul;Yi, Sun-Ae;Kong, Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.271-274
    • /
    • 2009
  • 강관의 내부에 콘크리트를 충전한 콘크리트 충전 강관 구조(CFT 구조, Concrete Filled Steel Tubular Structure)는 강재와 콘크리트의 단점을 상호 보완하고, 장점을 극대화 할 수 있다는 이점 때문에 최근 실제 구조물의 시공에 적용하는 사례가 증가하고 있는 추세이다. 이와 같은 CFT 거더의 장점을 살리면서 CFT 거더보다 더 뛰어난 경제적, 구조적 효율성을 얻기 위해 기존의 CFT 구조에 아치 형식과 프리스트레스를 도입한 CFTA(Concrete Filled and Tied Tubular Arch) 거더에 관한 연구가 현재 진행중이다. 본 연구에서는 CFTA 거더의 현장 실험과의 비교를 위해 ABAQUS 6.5-1을 이용하여 CFTA 거더의 유한요소 해석을 수행하였고, 이를 바탕으로 구조물의 선형거동을 분석하였다. 또한 구조물의 위험도 분석을 위해 본 구조물의 가장 약점으로 지적되고 있는 외부로 노출되어 있는 긴장재의 차량 충돌에 의한 사고를 가정하여 이를 고려한 유한 요소 해석을 수행하여 CFTA 구조물의 동적 및 정적 안전성 평가를 수행하고 그 결과를 분석하였다.

  • PDF

Non-Linear dynamic pulse buckling of laminated composite curved panels

  • Keshav, Vasanth;Patel, Shuvendu N.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.181-190
    • /
    • 2020
  • In this paper, non-linear dynamic buckling behaviour of laminated composite curved panels subjected to dynamic in-plane axial compressive loads is studied using finite element methods. The work is carried out using the finite element software ABAQUS. The curved panels are modelled with S4R element and the nonlinear dynamic equilibrium equations are solved using the ABAQUS/Explicit algorithm. The effect of aspect ratio, radius of curvature and thickness are studied. The importance of orientation of plies in the direction of loading is also reiterated in this study. Vol'mir's criterion is used to calculate the dynamic buckling loads. The panels are subjected to rectangular pulse load of various amplitude and durations and the responses are observed. For particular loading amplitude, a critical value of loading duration is observed beyond which the variation of dynamic buckling load is insignificant. It is also observed that, the value of dynamic bucking load reduces as the loading duration is increased though the reduction is not much after a particular loading duration.

Analysis of Filament Wound Pressure Tank Considering Winding Angle Variation in Thickness Direction (두께 방향의 와인딩 각도 변화를 고려한 필라멘트 와인딩 된 압력탱크의 해석)

  • 김철웅;박재성;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.211-214
    • /
    • 2000
  • Filament wound pressure vessels have been studied for the efficient design tool to consider the variation of fiber angles through-the thickness direction. Filament winding patterns were simulated from semi-geodesic fiber path equation to calculate fiber path on arbitrary surface. Finite element analyses were performed considering fiber angle variation in longitudinal and thickness directions by ABAQUS. For the finite element modeling of the pressure tank, the 3-dimensional layered solid element was utilized. From the stress results of pressure tanks, maximum stress criterion in transverse direction was applied to modify material properties for failed region. In the end of each load increment, resultant layer stresses were compared with a failure criterion and properties were reduced to 1/10 for a failed layer. Results of progressive failure analysis were compared with two experimental data.

  • PDF

An Analysis of Cone Penetration Based on Arbitrary Larangian-Eulerian Method (Arbitrary Lagrangian-Eulerian 기법에 의거한 콘 관입 해석)

  • Oh, Se-Boong
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.85-98
    • /
    • 2001
  • Cone penetration was analyzed by arbitrary Lagangian-Eulerian(ALE) method. In order to simulate full penetration, steady state analyses were performed using ABAQUS/Explicit, which models upward flow of soil layers. In the analysis of homogeneous layer it was found that the paths and the strain of soil particles were consistent with the result of the strain path method and that the ultimate resistance were reasonably evaluated. The cone penetration through different soil layers was also analyzed and that showed the transfer of cone resistance. The steady state ALE analysis could perform full penetration through the layered soils.

  • PDF