• 제목/요약/키워드: Abaqus

검색결과 1,395건 처리시간 0.025초

다결정재 소성변형의 탄소성 해석을 위한 접선강성 개발 (A New Tangent Stiffness for Anisotropic Elasto-Viscoplastic Analysis of Polycrystalline Deformations)

  • 윤종헌;허훈;이용신
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.349-352
    • /
    • 2006
  • The plastic deformation of polycrystalline materials is induced by changes of the microstructure when the loading is beyond the critical state of stress. Constitutive models for the crystal plasticity have the common objective which relates microscopic single crystals in the crystallographic texture to the macroscopic continuum point. In this paper, a new consistent tangent stiffness for the anisotropic elasto-viscoplastic analysis of polycrystalline deformation is developed, which can be used in the finite element analysis for the slip-dominated large deformation of polycrystalline materials. In order to calculate the consistent tangent stiffness, the state function is defined based on the consistency condition between the elastic and plastic stress. The rate of shearing increment($\Delta{\gamma}^{\alpha}$) is calculated with satisfying the consistency condition. The consistency condition becomes zero when the trial resolved shear stress($\tau^{{\alpha}^*}$) becomes resolved shear stress($\tau^{\alpha}$) at every step. Iterative method is utilized to calculate the rate of shearing increment based on the implicit backward Euler method. The consistent tangent stiffness can be formulated by differentiating the rate of shearing increment with total strain increment after the instant rate of shearing increment converges. The proposed tangent stiffness is applied to the ABAQUS/Standard by implementing in the ABAQUS/UMAT.

  • PDF

파력발전기 부유체설계를 위한 SPH와 ISPH 유체모델링 기법 비교 (Comparison of Fluid Modeling Methods Based on SPH and ISPH for a Buoy Design for a Wave Energy Converter)

  • 전철웅;손정현;양민석
    • 한국기계가공학회지
    • /
    • 제16권3호
    • /
    • pp.94-99
    • /
    • 2017
  • The buoy of the wave energy converter moves by direct contact with the fluid. In order to design a buoy by using the numerical method, it is necessary to analyze not only the contact with the fluid but also the exact behavior of the fluid. In this paper, differences between weakly compressible smoothed particle hydrodynamics (WCSPH) and incompressible smoothed particle hydrodynamics (ISPH) are compared and analyzed for two-dimensional dam breaking simulation. ABAQUS, which is a commercial analysis program, is used for WCSPH analysis. A laboratory code is developed for ISPH analysis. The surface shape, the velocity, and the pressure pattern of the fluid are compared. The results of the laboratory code show the similar tendencies with those of ABAQUS, and there is a little difference in the pressure result.

Contact analysis of spherical ball and a deformable flat model with the effect of tangent modulus

  • Sathish Gandhi, V.C.;Ramesh, S.;Kumaravelan, R.;Thanmanaselvi, M.
    • Structural Engineering and Mechanics
    • /
    • 제44권1호
    • /
    • pp.61-72
    • /
    • 2012
  • The paper is on contact analysis of a spherical ball with a deformable flat, considering the effect of tangent modulus on the contact parameters of a non-adhesive frictionless elastic-plastic contact. The contact analysis of this model has been carried out using analysis software Ansys and Abaqus. The contact parameters such as area of contact between two consecutive steps, volume of bulged material are evaluated from the formulated equations. The effect of the tangent modulus is considered for determining these parameters. The tangent modulus are accounted between 0.1E and 0.5E of materials E/Y value greater than 500 and less than 1750. Result shows that upto an optimal tangent modulus values the elastic core push up to the free surface in the flat. The simulation is also carried out in Abaqus and result provide evidence for the volume of bulged material in the contact region move up and flow into the free surface of the flat from the contact edge between the ball and flat. The strain energy of the whole model is varied between 20 to 40 percentage of the stipulated time for analysis.

Numerical Analysis of Pile-Soil Interaction under Axial and Lateral Loads

  • Khodair, Yasser;Abdel-Mohti, Ahmed
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권3호
    • /
    • pp.239-249
    • /
    • 2014
  • In this paper, the analysis of a numerical study of pile-soil interaction subjected to axial and lateral loads is presented. An analysis of the composite pile-soil system was performed using the finite difference (FD) software LPILE. Two three dimensional, finite element (FE) models of pile-soil interaction have been developed using Abaqus/Cae and SAP2000 to study the effect of lateral loading on pile embedded in clay. A lateral displacement of 2 cm was applied to the top of the pile, which is embedded into the concrete pile cap, while maintaining a zero slope in a guided fixation. A comparison between the bending moments and lateral displacements along the depth of the pile obtained from the FD solutions and FE was performed. A parametric study was conducted to study the effect of crucial design parameters such as the soil's modulus of elasticity, radius of the soil surrounding the pile in Abaqus/Cae, and the number of springs in SAP2000. A close correlation is found between the results obtained by the FE models and the FD solution. The results indicated that increasing the amount of clay surrounding the piles reduces the induced bending moments and lateral displacements in the piles and hence increases its capacity to resist lateral loading.

가스발생기 산화제 개폐밸브 주름관 구조 평가 (Structural Evaluations of the Bellows for a Gas-generator Lox Shut-off Valve)

  • 유재한;이중엽;이수용;임형태
    • 항공우주기술
    • /
    • 제11권1호
    • /
    • pp.91-97
    • /
    • 2012
  • 가스발생기 산화제 개폐 밸브에 사용되는 주름관의 구조 해석 및 시험이 수행되었다. 이 주름관은 극저온에서 압축 변위와 높은 외압 하중을 받는다. 구조 해석은 상온 및 극저온에서 EJMA (Expansion Joint Manufacturing Association) 표준 및 상용 유한 요소 해석프로그램인 Abaqus v6.9를 이용하여 수행되었다. 스프링 강성, 응력 및 피로 수명 해석 결과들이 비교되었고 유한 요소 해석 결과에서 접촉 및 재질의 소성에 의한 영향을 살펴보았다. 또한 파열 시험과 관련된 유한 요소 해석 결과도 제시되었다.

Finite element analysis of shear-deficient RC beams strengthened with CFRP strips/sheets

  • Lee, H.K.;Ha, S.K.;Afzal, M.
    • Structural Engineering and Mechanics
    • /
    • 제30권2호
    • /
    • pp.247-261
    • /
    • 2008
  • Performance of shear-deficient reinforced concrete (RC) beams strengthened with carbon fiber-reinforced polymer (CFRP) strips/sheets is analyzed through numerical simulations on four-point bending tests. The numerical simulations are carried out using the finite element (FE) program ABAQUS. A micromechanics-based constitutive model (Liang et al. 2006) is implemented into the FE program ABAQUS to model CFRP strips/sheets. The predicted results are compared with experiment data (Khalifa and Nanni 2002) to assess the accuracy of the proposed FE analysis approach. A series of numerical tests are conducted to investigate the influence of stirrup lay-ups on the shear strengthening performance of the CFRP strips/sheets, to illustrate the influence of the damage parameters on the microcrack density evolution in concrete, and to investigate the shear and flexural strengthening performance of CFRP strips/ sheets. It has been shown that the proposed FE analysis approach is suitable for the performance prediction of RC beams strengthened with CFRP strips/sheets.

Behavior of composite CFST beam-concrete column joints

  • Kim, Seung-Eock;Choi, Ji-Hun;Pham, Thai-Hoan;Truong, Viet-Hung;Kong, Zhengyi;Duong, Nguyen-The;Vu, Quang-Viet
    • Steel and Composite Structures
    • /
    • 제37권1호
    • /
    • pp.75-90
    • /
    • 2020
  • This paper introduces a new composite joint, which is the composite CFST beam- concrete column joint, and it is more convenient for transportation and erection than conventionally welded joints. The main components of this joint include steel H-beams welded with CFST beams, reinforced concrete columns, and reinforced concrete slabs. The steel H-beams and CFST beams are connected with a concrete slab using shear connectors to ensure composite action between them. An experimental investigation was conducted to evaluate the proposed composite joint performance. A three-dimensional (3D) finite element (FE) model was developed and analyzed for this joint using the ABAQUS/explicit. The FE model accuracy was validated by comparing its results with the relevant test results. Additionally, the parameters that consisted of the steel box beam thickness, concrete compressive strength, steel yield strength, and reinforcement ratio in the concrete slab were considered to investigate their influence on the proposed joint performance.

적층배열 변화에 따른 진동하는 복합재료 적층 구조의 미시역학적 물성변화 추정 (Determination of Degraded Properties of Vibrating Laminated Composite Plates for Different Layup Sequences)

  • 김규동;이상열
    • Composites Research
    • /
    • 제28권5호
    • /
    • pp.277-284
    • /
    • 2015
  • 본 연구의 목적은 고유진동 응답데이터로부터 적층된 GFRP 판구조의 섬유 물성 변화를 추정하는 것이다. 고등유한요소 상용프로그램(ABAQUS)와 연동된 알고리즘은 미시역학적 관점에서 손상된 요소를 추정할 뿐만 아니라 위치, 개수 및 정도를 탐색할 수 있다. 연동된 기법을 적용하여 역문제를 해결하기 위하여 본 연구에서는 모드형상 대신 제한된 몇 개의 고유진동수 데이터만을 적용하였다. 몇가지 수치해석 결과로부터 제안된 시스템 기법은 다양한 적층배열을 갖는 복합재료 적층판과 같은 복잡한 구조물의 섬유 강성 변화를 추정하는 데 수치해석적으로 효율적임을 보여준다.

성형툴의 상태에 따른 탄소섬유강화 복합재 구조물의 변형 예측 (Prediction of Deformation of Carbon-fiber Reinforced Polymer Matrix Composite for Tool Materials and Surface Conditions)

  • 성수환;김위대
    • Composites Research
    • /
    • 제27권6호
    • /
    • pp.231-235
    • /
    • 2014
  • 오토클레이브 성형은 성형제품의 품질은 우수하나 생산비용이 비싸다는 단점이 있다. 생산비용 중에서도 큰 비중을 차지하는 것이 성형툴의 제작공정이다. 따라서 본 연구에서는 생산비용 절감을 위한 선행 연구로서 성형툴의 재질 및 표면상태에 따라 L-shape 제품의 성형후 Spring-in을 Abaqus user subroutine을 이용하여 계산하였고, 열팽창계수와 마찰계수에 따른 결과를 나타내었다. 또한 성형툴 제작시 재질 및 표면상태의 기준점을 제시하여 생산비용을 줄이는데 기여하고자 한다.

Behavior of circular thin-walled steel tube confined concrete stub columns

  • Ding, Fa-xing;Tan, Liu;Liu, Xue-mei;Wang, Liping
    • Steel and Composite Structures
    • /
    • 제23권2호
    • /
    • pp.229-238
    • /
    • 2017
  • This paper presents a combined numerical and theoretical study on the composite action between steel and concrete of circular steel tube confined concrete (STCC) stub columns under axial compressive loading with a full theoretical elasto-plastic model and finite element (FE) model in comparison with experimental results. Based on continuum mechanics, the elasto-plastic model for STCC stub columns was established and the analysis was realized by a FORTRAN program and the three dimensional FE model was developed using ABAQUS. The steel ratio of the circular STCC columns were defined in range of 0.5% to 2% to analyze the composite action between steel tube and concrete, and make a further study on the advantages of the circular STCC columns. By comparing the results using the elasto-plastic methods with the parametric analysis result of FE model, the appropriate friction coefficient between the steel tube and core concrete was defined as 0.4 to 0.6. Based on ultimate balance theory, the formula of ultimate load capacity applying to the circular STCC stub columns was developed.