• 제목/요약/키워드: Abaqus

검색결과 1,395건 처리시간 0.021초

Punching performance of RC slab-column connections with inner steel truss

  • Shi, Qingxuan;Ma, Ge;Guo, Jiangran;Ma, Chenchen
    • Advances in concrete construction
    • /
    • 제14권3호
    • /
    • pp.195-204
    • /
    • 2022
  • As a brittle failure mode, punching-shear failure can be widely found in traditional RC slab-column connections, which may lead to the entire collapse of a flat plate structure. In this paper, a novel RC slab-column connection with inner steel truss was proposed to enhance the punching strength. In the proposed connection, steel trusses, each of which was composed of four steel angles and a series of steel strips, were pre-assembled at the periphery of the column capital and behaved as transverse reinforcements. With the aim of exploring the punching behavior of this novel RC slab-column connection, a static punching test was conducted on two full-scaled RC slab specimens, and the crack patterns, failure modes, load-deflection and load-strain responses were thoroughly analyzed to explore the contribution of the applied inner steel trusses to the overall punching behavior. The test results indicated that all the test specimens suffered the typical punching-shear failure, and the higher punching strength and initial stiffness could be found in the specimen with inner steel trusses. The numerical models of tested specimens were analyzed in ABAQUS. These models were verified by comparing the results of the tests with the results of the analyzes, and subsequently the sensitivity of the punching capacity to different parameters was studied. Based on the test results, a modified critical shear crack theory, which could take the contribution of the steel trusses into account, was put forward to predict the punching strength of this novel RC slab-column connection, and the calculated results agreed well with the test results.

Numerical modelling of the behavior of bare and masonry-infilled steel frames with different types of connections under static loads

  • Galal Elsamak;Ahmed H. Elmasry;Basem O. Rageh
    • Computers and Concrete
    • /
    • 제33권1호
    • /
    • pp.103-119
    • /
    • 2024
  • In this paper, the non-linear behavior of masonry-infill and bare steel frames using different beam-column connections under monotonic static loading was investigated through a parametric study. Numerical models were carried out using one- and two-dimensional modelling to validate the experimental results. After validating the experimental results by using these models, a parametric study was carried out to model the behavior of these frames using flushed, extended, and welded connections. The results showed that using the welded or extended connection is more efficient than using the flushed type in masonry-infilled steel frames, since the lateral capacities, initial stiffness, and toughness have been increased by 155%, 601%, and 165%, respectively in the case of using welded connections compared with those used in bare frames. The FE investigation was broadened to study the influence of the variation of the uniaxial column loads on the lateral capacities of the bare/infill steel frames. As the results showed when increasing the amount of uniaxial loading on the columns, whether in tension or compression, causes the lateral load capacity of the columns to decrease by 26% for welded infilled steel frames. Finally, the influence of using different types of beam-to-column connections on the vertical capacities of the bare/infill steel frames under settlement effect was also studied. As a result, it was found that, the vertical load capacity of all types of frames and with using any type of connections is severely reduced, and this decrease may reach 62% for welded infilled frames. Furthermore, the flushed masonry-infilled steel frame has a higher resistance to the vertical loads than the flushed bare steel frame by 133%.

Effects of the location and size of web openings on shear behavior of clamped-clamped reinforced concrete beams

  • Ceyhun Aksoylu;Yasin Onuralp Ozkilic;Ibrahim Y. Hakeem;Ilker Kalkan
    • Computers and Concrete
    • /
    • 제33권3호
    • /
    • pp.251-264
    • /
    • 2024
  • The present study pertains to the effects of variations in the location and size of drilled web openings on the behavior of fixed-fixed reinforced concrete (RC) beams. For this purpose, a reference bending beam with a transverse opening in each half span was tested to failure. Later, the same beam was modeled and analyzed with the help of finite element software using ABAQUS. Upon achieving close agreement between the experimental and numerical results, the location and size of the web opening were altered to uncover the effects of these factors on the shear strength and load-deflection behavior of RC beams. The experimental failure mode of the tested beam and the numerical results were also verified by theoretical calculations. In numerical analysis, when compared to the reference (D0) specimen, if the distance of the opening center from the support is 0 or h or 2h, reduction in load-bearing capacity of 1.5%-22.8% or 2.0%-11.3% or is 4.1%-40.7%. In other words, both the numerical analyses and theoretical calculations indicated that the beam behavior shifted from shear-controlled to flexure-controlled as the openings approached the supports. Furthermore, the deformation capacities, energy absorption values, and the ductilities of the beams with different opening diameters also increased with the decreasing distance of the opening from supports. Web compression failure was shown to be the predominant mode of failure of beams with large diameters due to the lack of sufficient material in the diagonal compression strut of the beam. The present study indicated that transverse openings with diameters, not exceeding about 1/3 of the entire beam depth, do not cause the premature shear failure of RC beams. Finally, shear damage should be prevented by placing special reinforcements in the areas where such gaps are opened.

Study on the influence of structural and ground motion uncertainties on the failure mechanism of transmission towers

  • Zhaoyang Fu;Li Tian;Xianchao Luo;Haiyang Pan;Juncai Liu;Chuncheng Liu
    • Earthquakes and Structures
    • /
    • 제26권4호
    • /
    • pp.311-326
    • /
    • 2024
  • Transmission tower structures are particularly susceptible to damage and even collapse under strong seismic ground motions. Conventional seismic analyses of transmission towers are usually performed by considering only ground motion uncertainty while ignoring structural uncertainty; consequently, the performance evaluation and failure prediction may be inaccurate. In this context, the present study numerically investigates the seismic responses and failure mechanism of transmission towers by considering multiple sources of uncertainty. To this end, an existing transmission tower is chosen, and the corresponding three-dimensional finite element model is created in ABAQUS software. Sensitivity analysis is carried out to identify the relative importance of the uncertain parameters in the seismic responses of transmission towers. The numerical results indicate that the impacts of the structural damping ratio, elastic modulus and yield strength on the seismic responses of the transmission tower are relatively large. Subsequently, a set of 20 uncertainty models are established based on random samples of various parameter combinations generated by the Latin hypercube sampling (LHS) method. An uncertainty analysis is performed for these uncertainty models to clarify the impacts of uncertain structural factors on the seismic responses and failure mechanism (ultimate bearing capacity and failure path). The numerical results show that structural uncertainty has a significant influence on the seismic responses and failure mechanism of transmission towers; different possible failure paths exist for the uncertainty models, whereas only one exists for the deterministic model, and the ultimate bearing capacity of transmission towers is more sensitive to the variation in material parameters than that in geometrical parameters. This research is expected to provide an in-depth understanding of the influence of structural uncertainty on the seismic demand assessment of transmission towers.

Damage rate assessment of cantilever RC walls with backfill soil using coupled Lagrangian-Eulerian simulation

  • Javad Tahamtan;Majid Gholhaki;Iman Najjarbashi;Abdullah Hossaini;Hamid Pirmoghan
    • Geomechanics and Engineering
    • /
    • 제36권3호
    • /
    • pp.231-245
    • /
    • 2024
  • In recent decades, the protection and vulnerability of civil structures under explosion loads became a critical issue in terms of security, which may cause loss of lives and structural damage. Concrete retaining walls also restrict soils and slopes from displacements; meanwhile, intensive temporary loading may cause massive damage. In the current study, the modified Johnson-Holmquist (also known as J-H2) material model is implemented for concrete materials to model damages into the ABAQUS through user-subroutines to predict the blasting-induced concrete damages and volume strains. For this purpose, a 3D finite-element model of the concrete retaining wall was conducted in coupled Eulerian-Lagrangian simulation. Subsequently, a blast load equal to 500 kg of TNT was considered in three different positions due to UFC 3-340-02. Influences of the critical parameters in smooth blastings, such as distance from a free face, position, and effective blasting time, on concrete damage rate and destroy patterns, are explored. According to the simulation results, the concrete penetration pattern at the same distance is significantly influenced by the density of the progress environment. The result reveals that the progress of waves and the intensity of damages in free-air blasting is entirely different from those that progress in a dense surrounding atmosphere such as soil. Half-damaged elements in air blasts are more than those of embedded explosions, but dense environments such as soil impose much more pressure in a limited zone and cause more destruction in retaining walls.

Seismic response analysis of buried oil and gas pipelines-soil coupled system under longitudinal multi-point excitation

  • Jianbo Dai;Zewen Zhao;Jing Ma;Zhaocheng Wang;Xiangxiang Ma
    • Earthquakes and Structures
    • /
    • 제26권3호
    • /
    • pp.239-249
    • /
    • 2024
  • A new layered shear continuum model box was developed to address the dynamic response issues of buried oil and gas pipelines under multi-point excitation. Vibration table tests were conducted to investigate the seismic response of buried pipelines and the surrounding soil under longitudinal multi-point excitation. A nonlinear model of the pipeline-soil interaction was established using ABAQUS finite element software for simulation and analysis. The seismic response characteristics of the pipeline and soil under longitudinal multi-point excitation were clarified through vibration table tests and simulation. The results showed good consistency between the simulation and tests. The acceleration of the soil and pipeline exhibited amplification effects at loading levels of 0.1 g and 0.2 g, which significantly reduced at loading levels of 0.4 g and 0.62 g. The peak acceleration increased with increasing loading levels, and the peak frequency was in the low-frequency range of 0 Hz to 10 Hz. The amplitude in the frequency range of 10 Hz to 50 Hz showed a significant decreasing trend. The displacement peak curve of the soil increased with the loading level, and the nonlinearity of the soil resulted in a slower growth rate of displacement. The strain curve of the pipeline exhibited a parabolic shape, with the strain in the middle of the pipeline about 3 to 3.5 times larger than that on both sides. This study provides an effective theoretical basis and test basis for improving the seismic resistance of buried oil and gas pipelines.

Behavior of simple precast high-strength concrete beams connected in the maximum bending moment zone using steel extended endplate connections

  • Magdy I. Salama;Jong Wan Hu;Ahmed Almaadawy;Ahmed Hamoda;Basem O. Rageh;Galal Elsamak
    • Steel and Composite Structures
    • /
    • 제50권6호
    • /
    • pp.627-641
    • /
    • 2024
  • This paper presents an experimental and numerical study to investigate the behavior of the precast segmental concrete beams (PSCBs) utilizing high-strength concrete (HSC) connected in the zone of the maximum bending moment using steel extended endplate connections (EECs). The experimental study consisted of five beams as follows: The first beam was the control beam for comparison, which was an unconnected one-piece beam made of HSC. The other four other beams consisted of two identical pieces of precast concrete. An important point to be noted is that at the end of each piece, a steel plate was used with a thickness of 10 mm. Moreover, this steel plate was welded to the lower and upper reinforcing bars of the beam. Furthermore, the steel plate was made to connect the two pieces using the technique of EECs. Several variables were taken in these four beams, whether from the shape of the connection or enhancing the behavior of the connection using the post-tensioning technique. EECs without stiffeners were used for some of the tested beams. The behavior of these connections was improved using stiffeners and shear bolts. To get accurate results, a comparison was made between the behaviors of the five beams. Another important point to be noted is that Abaqus and SAP2000 programs were used to investigate the behavior of PSCBs and to ensure the accuracy of the modeling process which showed a good agreement with the experimental results. Additionally, the simplified modeling using SAP2000 was able to model the nonlinear behavior of PSCBs connected using steel EECs. It was found that the steel pre-tensioned bolted EECs, reinforced with steel stiffeners and shear anchors, could be used to connect the precast HSC segmental beams via the internal pre-stressing technique.

Numerical investigation on seismic performance of reinforced rib-double steel plate concrete combination shear wall

  • Longyun Zhou;Xiaohu Li;Xiaojun Li
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.78-91
    • /
    • 2024
  • Double steel plate concrete composite shear wall (SCSW) has been widely utilized in nuclear power plants and high-rise structures, and its shear connectors have a substantial impact on the seismic performance of SCSW. Therefore, in this study, the mechanical properties of SCSW with angle stiffening ribs as shear connections were parametrically examined for the reactor containment structure of nuclear power plants. The axial compression ratio of the SCSW, the spacing of the angle stiffening rib arrangement and the thickness of the angle stiffening rib steel plate were selected as the study parameters. Four finite element models were constructed by using the finite element program named ABAQUS to verify the experimental results of our team, and 13 finite element models were established to investigate the selected three parameters. Thus, the shear capacity, deformation capacity, ductility and energy dissipation capacity of SCSW were determined. The research results show that: compared with studs, using stiffened ribs as shear connectors can significantly enhance the mechanical properties of SCSW; When the axial compression ratio is 0.3-0.4, the seismic performance of SCSW can be maximized; with the lowering of stiffener gap, the shear bearing capacity is greatly enhanced, and when the gap is lowered to a specific distance, the shear bearing capacity has no major affect; in addition, increasing the thickness of stiffeners can significantly increase the shear capacity, ductility and energy dissipation capacity of SCSW. With the rise in the thickness of angle stiffening ribs, the improvement rate of each mechanical property index slows down. Finally, the shear bearing capacity calculation formula of SCSW with angle stiffening ribs as shear connectors is derived. The average error between the theoretical calculation formula and the finite element calculation results is 8% demonstrating that the theoretical formula is reliable. This study can provide reference for the design of SCSW.

The behavior of concrete filled steel tubular columns infilled with high-strength geopolymer recycled aggregate concrete

  • Rajai Z. Al-Rousan;Haneen M. Sawalha
    • Steel and Composite Structures
    • /
    • 제51권6호
    • /
    • pp.661-678
    • /
    • 2024
  • The utilization of geopolymer recycled aggregate concrete (GRAC) as the infilled core of the concrete-filled steel tubular (CFST) columns provides superior economic and environmental benefits. However, limited research exists within the field of geopolymer recycled aggregate concrete considered a green and sustainable material, in addition to the limitation of the design guidelines to predict the behavior of such an innovative new material combination. Moreover, the behavior of high-strength concrete is different from the normal-strength one, especially when there is another material of high-strength properties, such as the steel tube. This paper aims to investigate the behavior of the axially loaded square high-strength GRACFST columns through the nonlinear finite element analysis (NLFEA). A total of thirty-two specimens were simulated using ABAQUS/Standard software with three main variables: recycled aggregate replacement ratio (0, 30, and 50) %, width-to-thickness ratios (52.0, 32.0, 23.4, and 18.7), and length-to-width ratio (3, 5, 9, and 12). During the analysis, the response in terms of the axial load versus the longitudinal strain was recorded and plotted. In addition, various mechanical properties were calculated and analyzed. In view of the results, it has been demonstrated that the mechanical properties of high-strength GRACFST columns such as ultimate load-bearing capacity, compressive stiffness, energy absorption capacity, and ductility increase with the increase of the steel tube thickness owing to the improvement of the confinement effect of the steel tube. In contrast, the incorporation of the recycled aggregate adversely affected the mentioned properties except the ductility, while the increase of the recycled aggregate replacement ratio improved the column's ductility. Moreover, it has been found that the increase in the length-to-width ratio significantly reduced both the failure strain and the energy absorption capacity. Finally, the obtained NLFEA results of the ultimate load-bearing capacity were compared with the corresponding predicted capacities by numerous codes. It has been concluded that AISC, ACI, and EC give conservative predictions for the ultimate load-bearing capacity since the confinement effect was not considered by these codes.

티타늄 합금, 지르코니아, 폴리에테르에테르케톤 지대주 재질에 따른 임플란트 구성요소의 응력분포: 유한 요소 분석을 통한 비교 연구 (Stress distribution in implant abutment components made of titanium alloy, zirconia, and polyetheretherketone: a comparative study using finite element analysis)

  • 김성민
    • 대한치과기공학회지
    • /
    • 제46권2호
    • /
    • pp.21-27
    • /
    • 2024
  • Purpose: This study aimed to analyze the stress distribution and deformation in implant abutments made from titanium (Ti-6Al-4V), zirconia, and polyetheretherketone (PEEK), including their screws and fixtures, under various loading conditions using finite element analysis (FEA). Methods: Three-dimensional models of the mandible with implant abutments were created using Siemens NX software (NX10.0.0.24, Siemens). FEA was conducted using Abaqus to simulate occlusal loads and assess stress distribution and deformation. Material properties such as Young's modulus and Poisson's ratio were assigned to each component based on literature and experimental data. Results: The FEA results revealed distinct stress distribution patterns among the materials. Titanium alloy abutments exhibited the highest stress resistance and the most uniform stress distribution, making them highly suitable for long-term stability. Zirconia abutments showed strong mechanical properties with higher stress concentration, indicating potential vulnerability to fracture despite their aesthetic advantages. PEEK abutments demonstrated the least stress resistance and higher deformation compared to other abutment materials, but offered superior shock absorption, though they posed a higher risk of mechanical failure under high load conditions. Conclusion: The study emphasizes the importance of selecting appropriate materials for dental implants. Titanium offers durability and uniform stress distribution, making it highly suitable for long-term stability. Zirconia provides aesthetic benefits but has a higher risk of fracture compared to titanium. PEEK excels in shock absorption but has a higher risk of mechanical failure compared to both titanium and zirconia. These insights can guide improved implant designs and material choices for various clinical needs.