• 제목/요약/키워드: Abandoned object detection

검색결과 10건 처리시간 0.028초

시각적 정황을 이용한 가림 현상에 강건한 버려진 물체 검출 (Robust Detection of Abandoned Objects Using Visual Context)

  • 이정현;임재현;백준기
    • 대한전자공학회논문지SP
    • /
    • 제49권3호
    • /
    • pp.60-66
    • /
    • 2012
  • 본 논문에서는 복잡한 환경에서 버려진 물체를 감시하기 위해 코너 검출기를 이용하여 버려진 물체 주변의 특징점을 검출하고, 이를 이용하여 가려진 경우에도 위치 정보를 추정할 수 있는 방법을 제안한다. 기존의 방법은 버려진 물체가 검출된 이후 가림 현상이 발생하면, 버려진 물체의 위치 정보를 손실하기 때문에 지속적인 감시가 불가능하다. 본 논문에서는 이러한 문제점을 개선하기 위해 해리스 코너 검출자를 이용하여 버려진 물체 주변의 특징점들을 추출하고, 특징점들과 버려진 물체의 중심을 연결하는 서포터를 이용하여 물체의 상대적인 위치를 추정한다. 따라서 버려진 물체가 다른 객체에 의해 가려지더라도 주변 코너를 이용하여 상대적인 위치를 추정할 수 있다. 제안된 방법은 지능형 감시시스템에 적용되어 버려진 물체 검출 및 감시에 활용될 수 있으며 이를 통해 버려진 가방이나 물건 등으로 위장한 물체를 이용한 폭탄테러를 미연에 방지할 수 있다.

Robust Real-time Detection of Abandoned Objects using a Dual Background Model

  • Park, Hyeseung;Park, Seungchul;Joo, Youngbok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.771-788
    • /
    • 2020
  • Detection of abandoned objects for smart video surveillance should be robust and accurate in various situations with low computational costs. This paper presents a new algorithm for abandoned object detection based on the dual background model. Through the template registration of a candidate stationary object and presence authentication methods presented in this paper, we can handle some complex cases such as occlusions, illumination changes, long-term abandonment, and owner's re-attendance as well as general detection of abandoned objects. The proposed algorithm also analyzes video frames at specific intervals rather than consecutive video frames to reduce the computational overhead. For performance evaluation, we experimented with the algorithm using the well-known PETS2006, ABODA datasets, and our video dataset in a live streaming environment, which shows that the proposed algorithm works well in various situations.

실시간 방치 및 제거 객체 검출 시스템 (Real Time Abandoned and Removed Objects Detection System)

  • 정철준;안태기;박종화;박구만
    • 방송공학회논문지
    • /
    • 제16권3호
    • /
    • pp.462-470
    • /
    • 2011
  • 본 논문에서는 실시간 영상감시 시스템에서 방치되거나 제거된 객체를 강인하게 검출하는 알고리듬을 제안한다. 방치되거나 없어진 객체는 사람이나 다른 움직임의 원인에 의해서 나타나기 때문에 추적을 기반으로 한 방법을 사용하였다. 가우시안 혼합 모델에 의해 전경과 배경을 분리하고 그림자 제거 알고리듬을 적용하였다. 모폴로지를 수행하여 주변 잡음을 제거하고 객체 구분을 명확히 하였다. 그리고 검출된 정지 객체를 방치되거나 사라지는 객체 중의 하나로 분류하였다. 추적방법을 적용함과 동시에 정지된 객체에 모니터링 시간까지 부여하여 검출된 객체가 다른 객체에 의해서 폐색되는 현상을 개선하였다. 영역성장기법을 이용하여 방치된 객체와 제거된 객체의 분류 성능을 높였다. 또한 제안된 시스템을 DSP 기반으로 설계하여 실시간 구현을 하였다. 실험을 통해 제안한 방법의 우수성을 입증하였다.

비전 기술에 기반한 위험 유기물의 자동 검출 시스템 (Automatic Detection System for Dangerous Abandoned Objects Based on Vision Technology)

  • 김원
    • 한국인터넷방송통신학회논문지
    • /
    • 제9권4호
    • /
    • pp.69-74
    • /
    • 2009
  • 공공장소에서의 유기물은 의도적 공공테러를 목적으로 폭발물이나 화학물질 등을 포함할 수 있기 때문에 일단 가능한 위험물로 반드시 다루어져야 한다. 공항이나 기차역과 같은 대형 공공장소에서는 전체 영역을 감시하는 모든 모니터를 점검할 보안 인력을 유지하는데 있어서 비용적 측면의 한계가 있게 마련이다. 이것이 비전 기술에 기반한 위험 유기물의 자동 검사 시스템을 개발하여야 하는 기본적 동기이다. 이 연구에서는 잘 알려진 DBE 기법을 적용하여 배경 이미지를 안정적으로 추출하는 것을 보이며, HOG 알고리즘을 적용하여 물체 분류에 있어서 사람과 물건을 구분하는 기능을 구현하였다. 제안된 시스템의 유효성을 보이기 위하여 감시 지역의 한 실내 환경에 대해 금지구역 침범을 탐지하고 유기물에 대한 경보를 발생하는 실험을 수행하였다.

  • PDF

실시간 지능형 감시 시스템을 위한 방치, 제거된 객체 검출에 관한 연구 (A Study on Object Detection Algorithm for Abandoned and Removed Objects for Real-time Intelligent Surveillance System)

  • 전지혜;박종화;정철준;강인구;안태기;박구만
    • 한국통신학회논문지
    • /
    • 제35권1C호
    • /
    • pp.24-32
    • /
    • 2010
  • 본 논문에서는 버려지거나 없어진 객체를 검출하는 시스템에 대해 연구하였다. 전경과 배경을 분리한 다음, 정적인 영역에 대한 검출을 통하여 방치되거나 제거된 물체를 검출하였다. 정적인 영역에 대한 검출 방법을 제안하고 히스토그램의 비교를 통해 방치, 제거 정보를 추출하였다. 제안된 방법은 CCTV 카메라의 입력 영상에 대하여 PC 및 DSP 칩을 이용하여 실시간 처리를 하였으며 DSP칩을 활용하였기 때문에 수정이 용이하다. 제안된 시스템에 대한 성능을 검증하기 위해 저, 중, 고의 복잡도에 따라 실험하였으며, 신뢰성 있는 검증을 위해 각 10회의 반복 수행을 하였다. 실험 결과, 복잡도가 낮거나 보통인 경우는 높은 객체 변화 검출률을 보였으며 매우 혼잡한 경우에는 환경적인 요인의 이유로 검출률이 상대적으로 낮은 것을 확인할 수 있었다. 이 원인은 복잡도가 높아짐에 따라 검출률이 낮은 것은 이동하는 객체들로 인해 방치된 객체의 폐색이 반복되기 때문이었다. 향후 이러한 문제의 해결을 위해 매우 복잡한 환경에서의 폐색에 대한 추가적인 연구와 강건한 정적 영역의 판단 방법에 대해 연구할 것이다.

시각적 가려짐을 극복하는 강인한 유기물 탐지 기법 (Robust Detection Technique for Abandoned Objects to Overcome Visual Occlusion)

  • 김원
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.23-29
    • /
    • 2010
  • 오늘날은 사회 안전을 강화하기 위하여 공공장소에서 유기물을 자동으로 검출하는 지능적 비전 감시 시스템을 설계하는 것이 필요한 때이다. 그런데, 이미 인지된 유기물의 일부분 또는 전체는 주변사람들로 가려질 수가 있다. 필수 지표 중 하나인 PAT를 개선하기 위해서는 시스템이 이러한 가려짐 문제를 극복해야만 한다. 이 연구에서는 이러한 가려짐 문제를 고려하여 강인한 검출시스템을 구축하기 위해서 여러 단계로 구성된 새로운 설계 기법을 제안한다. 제안된 시스템의 유용성을 보이기 위하여 6개의 다양한 상황을 포함하는 이미지 스트림에 대해서 평가를 시행했고, 그 실험 결과는 침입과 유기 행위에 대해 각각 96%와 75%의 성능을 보인다. 마지막으로 다수의 사람에 의한 가림 현상에도 불구하고 제안된 시스템은 계속적으로 유기물을 인지하는 성능을 보이고 있다.

면적의 변화 특성을 이용한 위험 유기물 형상 추출 모델 (Dangerous Abandoned Object Extraction Model Using Area Variation Characteristics)

  • 김원
    • 한국융합학회논문지
    • /
    • 제11권8호
    • /
    • pp.39-45
    • /
    • 2020
  • 최근에 미국, 영국, 일본에서 폭발물, 독성 화학물 등에 의한 테러가 공공장소에서 시도되고 있다. 위험물을 공공장소에서 두고 가는 방식은 탐지하기 어려운 방법 중에 하나로 인식되고 있다. 공공장소에는 곳곳에 카메라가 영상을 녹화하고 있지만, 그 영상을 사람이 일일이 모니터링 하는 것은 쉽지 않은 일이다. 최근에는 자동으로 영상을 분석하는 지능형 소프트웨어를 유기물 탐지에 이용하고 있다. Lin 등의 방식은 비교적 높은 유기물 탐지율을 보이고 있으나, 단기 배경 영상의 특성으로 유기물에 관련한 픽셀의 수가 시간이 지날수록 급격히 감소하는 경향이 있어 그 형상 정보를 얻기가 어렵다. 본 논문에서는 면적의 변화 특성을 분석함으로써 유기물의 형태를 성공적으로 추출하기 위한 새로운 기법을 제안한다. 제안한 방식에 대해 실험을 한 결과 선행 연구보다 형태 추출에서 우수한 성능을 보인다.

감시 비디오에서 등록 및 미등록 물체의 실시간 도난 탐지 (Realtime Theft Detection of Registered and Unregistered Objects in Surveillance Video)

  • 박혜승;박승철;주영복
    • 한국정보통신학회논문지
    • /
    • 제24권10호
    • /
    • pp.1262-1270
    • /
    • 2020
  • 최근 관심이 높아지고 있는 스마트 감시 비디오에 관한 연구는 주로 침입자 탐지 및 추적과 유기 물체 탐지에 초점이 맞춰져 왔고, 도난 물체의 실시간 탐지에 대한 연구는 중요성에 비해 상대적으로 미흡한 상황이다. 본 논문은 스마트 감시 비디오 적용 환경을 고려하여 두 가지의 서로 다른 도난 물체 탐지 알고리즘을 제시한다. 먼저 이중 배경 차감 모델(dual background subtraction model)을 사용하여 사전에 정적 및 동적으로 등록된 감시 대상 물체의 도난을 탐지하는 알고리즘을 제시한다. 그리고 이중 배경 차감 모델과 Mask R-CNN 기반의 객체 세그멘테이션 기술을 통합적으로 적용하여 일반 감시 물체의 도난을 탐지하는 알고리즘을 제시한다. 전자의 알고리즘은 등록된 감시 물체를 대상으로 계산 능력이 높지 않은 환경에서 경제적인 도난 탐지 서비스를 제공할 수 있고, 후자의 알고리즘은 충분한 계산 능력을 제공할 수 있는 환경에서 보다 광범위한 일반 감시 물체의 도난 탐지에 적용할 수 있다.

데이터 선별 및 클래스 세분화를 적용한 실시간 해양 침적 쓰레기 감지 AI 시스템 구현과 성능 개선 방법 연구 (A Study on the Implementation of Real-Time Marine Deposited Waste Detection AI System and Performance Improvement Method by Data Screening and Class Segmentation)

  • 왕태수;오세영;이현서;최동규;장종욱;김민영
    • 문화기술의 융합
    • /
    • 제8권3호
    • /
    • pp.571-580
    • /
    • 2022
  • 해양침적쓰레기는 유령어업으로 인한 폐어구들로 인해 많은 피해와 쓰레기 추정량 편차 증가 등의 문제를 일으키는 주요 원인이 된다. 본 논문에서는 폐어구 사용량, 유통량, 유실량, 회수량에 대한 실태 파악을 위해 실시간 해양침적쓰레기 감지 인공지능 시스템을 구현하고, 성능 개선을 위한 방법에 대해 연구한다. 실시간 객체인식에 우수한 성능모델인 yolov5모델을 활용하여 시스템을 구현하였고, 성능개선 방법으로는 학습데이터의 '데이터 선별 과정'과 '클래스 세분화' 방법을 적용하였다. 결론적으로 비선별된 데이터셋과 클래스가 세분화된 데이터셋의 객체인식 결과보다 불필요한 데이터를 선별하거나 특징 및 용도에 따라 유사 항목을 세분화 하지 않은 데이터셋의 객체인식 결과는 해양침적쓰레기 인식에 개선된 결과를 보인다.

지능형 비디오 분석을 위한 적응적 배경 생성 기반의 이상행위 검출 (Abnormal Behavior Detection Based on Adaptive Background Generation for Intelligent Video Analysis)

  • 이승원;김태경;유장희;백준기
    • 대한전자공학회논문지SP
    • /
    • 제48권1호
    • /
    • pp.111-121
    • /
    • 2011
  • 지능형 비디오 분석시스템은 불특정 다수의 객체가 가지는 행동을 분석하고, 불의의 사고를 사전에 예측하여 관리자에게 경고를 전달하는 기술을 필요로 한다. 본 논문은 적응적으로 배경을 생성하여 월담, 실신, 버려진 물체, 배회와 같이 사전에 정의된 이상행위를 분석하는 기술을 제안한다. 제안된 비디오 분석 시스템은 배경 생성과 이상 행위 분석 모듈로 구성된다. 강건한 배경 생성을 위해서 영상 내의 움직임 변화를 검출하여 매 순간마다 움직임이 없는 영역을 지속적으로 갱신하고, 이를 기반으로 객체를 검출한다. 또한 객체 검출의 정확성을 높이기 위해 검출된 결과에서 잡음과 그림자 제거 단계를 추가하였다. 이상행위 분석 모듈에서는 검출된 객체로부터 무게 중심, 실루엣, 크기, 이동 궤적 정보를 추출한다. 이때 이상행위의 판단은 월담, 실신, 버려진 물체, 배회에 따라 시나리오 환경으로 구성하고 분석하였다. 실험 결과에서 제안된 시스템은 복잡한 배경 환경에서도 이동 객체 검출 및 이상행위 분석이 가능하였다.