Realtime Theft Detection of Registered and Unregistered Objects in Surveillance Video

감시 비디오에서 등록 및 미등록 물체의 실시간 도난 탐지

  • Park, Hyeseung (School of Computer Science and Engineering, Korea University of Technology and Education) ;
  • Park, Seungchul (School of Computer Science and Engineering, Korea University of Technology and Education) ;
  • Joo, Youngbok (School of Computer Science and Engineering, Korea University of Technology and Education)
  • Received : 2020.07.15
  • Accepted : 2020.08.09
  • Published : 2020.10.31


Recently, the smart video surveillance research, which has been receiving increasing attention, has mainly focused on the intruder detection and tracking, and abandoned object detection. On the other hand, research on real-time detection of stolen objects is relatively insufficient compared to its importance. Considering various smart surveillance video application environments, this paper presents two different types of stolen object detection algorithms. We first propose an algorithm that detects theft of statically and dynamically registered surveillance objects using a dual background subtraction model. In addition, we propose another algorithm that detects theft of general surveillance objects by applying the dual background subtraction model and Mask R-CNN-based object segmentation technology. The former algorithm can provide economical theft detection service for pre-registered surveillance objects in low computational power environments, and the latter algorithm can be applied to the theft detection of a wider range of general surveillance objects in environments capable of providing sufficient computational power.

최근 관심이 높아지고 있는 스마트 감시 비디오에 관한 연구는 주로 침입자 탐지 및 추적과 유기 물체 탐지에 초점이 맞춰져 왔고, 도난 물체의 실시간 탐지에 대한 연구는 중요성에 비해 상대적으로 미흡한 상황이다. 본 논문은 스마트 감시 비디오 적용 환경을 고려하여 두 가지의 서로 다른 도난 물체 탐지 알고리즘을 제시한다. 먼저 이중 배경 차감 모델(dual background subtraction model)을 사용하여 사전에 정적 및 동적으로 등록된 감시 대상 물체의 도난을 탐지하는 알고리즘을 제시한다. 그리고 이중 배경 차감 모델과 Mask R-CNN 기반의 객체 세그멘테이션 기술을 통합적으로 적용하여 일반 감시 물체의 도난을 탐지하는 알고리즘을 제시한다. 전자의 알고리즘은 등록된 감시 물체를 대상으로 계산 능력이 높지 않은 환경에서 경제적인 도난 탐지 서비스를 제공할 수 있고, 후자의 알고리즘은 충분한 계산 능력을 제공할 수 있는 환경에서 보다 광범위한 일반 감시 물체의 도난 탐지에 적용할 수 있다.


  1. H. S. Park, J. H. Park, H. G. Kim, S. Q. Lee, and K. H. Park, "Hybrid Sensor Network-Based Indoor Surveillance System for Intrusion Detection," Symmetry 2018, vol. 10, no. 181, pp. 1-17, 2018.
  2. L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, and R. Qu, "A Survey of Deep Learning-based Object Detection," IEEE Access, vol. 7, pp. 128837-128868, Sep. 2019.
  3. E. Luna, J. C. Miguel, D. Ortego, and J. M. Martinez, "Abandoned Object Detection in Video-Surveillance: Survey and Comparison," Sensors, vol. 18, no. 12 pp. 1-32, Dec. 2018.
  4. H. E. Park, S. C. Park, and Y. B. Joo, "Robust Detection of Abandoned Object for Smart Video Surveillance in Illumination Changes," Sensors, vol. 19, no. 23, pp. 1-17, Nov. 2019.
  5. H. E. Park, S. C. Park, and Y. B. Joo, "Robust Realtime Detection of Abandoned Objects using a Dual Background Model," KSII Transaction on Internet and Information Systems, vol. 14, no. 2, pp. 771-788, Feb. 2020.
  6. H. E. Park, S. C. Park, and Y. B. Joo, "Detection of Abandoned and Stolen Objects Based on Dual Background Model and Mask R-CNN," IEEE Access, vol. 8, pp. 80010-80019, Feb. 2020.
  7. K. He, G. Gkioxari, P. Dollar, and R. Girshick, "Mask R-CNN," 2017 IEEE International Conference on Computer Vision (ICCV), Venice, pp. 2980-2988, Oct. 2017.
  8. F. Porikli, Y. Ivanov, and T. Haga, "Robust Abandoned Object detection using Dual Foregrounds," EURASIP Journal on Advances in Signal Processing, vol. 2008, pp. 1-11, Oct. 2007.
  9. K. Lin, S. Chen, C. Chen, D. Lin, and Y. Hung, "Abandoned Object Detection via Temporal Consistency Modeling and Back-Tracing Verification for Visual Surveillance," IEEE Transactions on Information Forensics and Security, vol. 10, no. 7, pp. 1359-1370, Jul. 2015.
  10. J. Connell, A. W. Senior, A. Hampapur, Y. -. Tian, L. Brown, and S. Pankanti, "Detection and Tracking in the IBM PeopleVision System," 2004 IEEE International Conference on Multimedia and Expo (ICME), Taipei, pp. 1403-1406, 2004.
  11. P. L. Venetianer, Z. Zhang, W. Yin, and A. J. Lipton, "Stationary Target Detection using the Objectvideo Surveillance System," 2007 IEEE Conference on Advanced Video and Signal Based Surveillance, London, pp. 242-247, Sep. 2007.
  12. Y. Tian, R. S. Feris, H. Liu, A. Hampapur, and M. Sun, "Robust Detection of Abandoned and Removed Objects in Complex Surveillance Videos," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 41, no. 5, pp. 565-576, Sep. 2011.
  13. Z. Zivkovic and F. van der Heijen, "Efficient Adaptive Density Estimation per Image Pixel for the Task of Background Subtraction," Pattern Recognition Letter, vol. 27, no. 7, pp. 773-780, May. 2006.
  14. F. Massa and R. Girshick. (2019). Maskrcnn-Benchmark : Fast, Modular Reference Implementation of Instance Segmentation and Object Detection Algorithms in PyTorch [Internet]. Available: