• Title/Summary/Keyword: Abandoned object detection

Search Result 10, Processing Time 0.03 seconds

Robust Detection of Abandoned Objects Using Visual Context (시각적 정황을 이용한 가림 현상에 강건한 버려진 물체 검출)

  • Lee, Jung-Hyun;Im, Jae-Hyun;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.3
    • /
    • pp.60-66
    • /
    • 2012
  • In this paper, we propose abandoned object detection algorithm. When abandoned object was occluded other object, the existing methods cannot detect abandoned object because those methods are not able to estimate the location of abandoned object. In order to overcome this problem, the proposed algorithm extracts the corners around abandoned object. The detected corners are linked to center of abandoned object called by supporters. We can then estimate the location of abandoned object by using supporters. Therefore, the proposed algorithm can detect and estimate the location of abandoned object, when abandoned object is occluded by other object. For this reason, the proposed algorithm can be applied to intelligent surveillance system to prevent bomb terror, which disguises as luggage or box.

Robust Real-time Detection of Abandoned Objects using a Dual Background Model

  • Park, Hyeseung;Park, Seungchul;Joo, Youngbok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.771-788
    • /
    • 2020
  • Detection of abandoned objects for smart video surveillance should be robust and accurate in various situations with low computational costs. This paper presents a new algorithm for abandoned object detection based on the dual background model. Through the template registration of a candidate stationary object and presence authentication methods presented in this paper, we can handle some complex cases such as occlusions, illumination changes, long-term abandonment, and owner's re-attendance as well as general detection of abandoned objects. The proposed algorithm also analyzes video frames at specific intervals rather than consecutive video frames to reduce the computational overhead. For performance evaluation, we experimented with the algorithm using the well-known PETS2006, ABODA datasets, and our video dataset in a live streaming environment, which shows that the proposed algorithm works well in various situations.

Real Time Abandoned and Removed Objects Detection System (실시간 방치 및 제거 객체 검출 시스템)

  • Jeong, Cheol-Jun;Ahn, Tae-Ki;Park, Jong-Hwa;Park, Goo-Man
    • Journal of Broadcast Engineering
    • /
    • v.16 no.3
    • /
    • pp.462-470
    • /
    • 2011
  • We proposed a realtime object tracking system that detects the abandoned or disappeared objects. Because these events are caused by human, we used the tracking based algorithm. After the background subtraction by Gaussian mixture model, the shadow removal is applied for accurate object detection. The static object is classified as either of abandoned objects or disappeared object. We assigned monitoring time to the static object to overcome a situation that it is being overlapped by other object. We obtained more accurate detection by using region growing method. We implemented our algorithm by DSP processor and obtained an excellent result throughout the experiment.

Automatic Detection System for Dangerous Abandoned Objects Based on Vision Technology (비전 기술에 기반한 위험 유기물의 자동 검출 시스템)

  • Kim, Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.69-74
    • /
    • 2009
  • Abandoned objects should be treated as possibly dangerous things for public areas until they turn out to be safe because explosive material or chemical substance is intentionally contained in them for public terrors. For large public areas such as airports or train stations, there are limits in man-power for security staffs to check all the monitors for covering the entire area under surveillance. This is the basic motivation of developing the automatic detection system for dangerous abandoned objects based on vision technology. In this research, well-known DBE is applied to stably extract background images and the HOG algorithm is adapted to discriminate between human and stuff for object classification. To show the effectiveness of the proposed system, experiments are carried out in detecting intrusion for a forbidden area and alarming for abandoned objects in a room under surveillance.

  • PDF

A Study on Object Detection Algorithm for Abandoned and Removed Objects for Real-time Intelligent Surveillance System (실시간 지능형 감시 시스템을 위한 방치, 제거된 객체 검출에 관한 연구)

  • Jeon, Ji-Hye;Park, Jong-Hwa;Jeong, Cheol-Jun;Kang, In-Goo;An, Tae-Ki;Park, Goo-Man
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.24-32
    • /
    • 2010
  • In this paper we proposed an object tracking system that detects the abandoned and removed objects, which is to be used in the intelligent surveillance applications. After the GMM based background subtraction and by using histogram method, the static region is identified to detect abandoned and removed objects. Since the system is implemented on DSP chip, it operates in realtime and is programmable. The input videos used in the experiment contain various indoor and outdoor scenes, and they are categorized into three different complexities; low, midium and high. By 10 times of experiment, we obtained high detection ratio at low and medium complexity sequences. On the high complexity video, successful detection ratio was relatively low because the scene contains crowdedness and repeated occlusion. In the future work, these complicated situation should be solved.

Robust Detection Technique for Abandoned Objects to Overcome Visual Occlusion (시각적 가려짐을 극복하는 강인한 유기물 탐지 기법)

  • Kim, Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.23-29
    • /
    • 2010
  • Nowadays it is required to design intelligent visual surveillance systems which automatically detect abandoned objects in public places to strengthen the social safety. Already recognized abandoned objects can be occluded partially or fully by surrounding people in public places after the first recognition. To improve an essential recognition performance index PAT, the system should overcome the occlusion problems. In this research, a design scheme is newly proposed to construct the robust detection system which is comprised of multiple stages considering the occlusion problem. To show the feasibilities of the proposed system, the evaluation was tried for the prepared image streams including 6 various situations and the experimental results show 96% and 75% in PAT performance for intrusion and abandoning events, respectively. Finally in spite of full occlusions by multiple persons, the proposed system shows the capability to continuously recognize the abandoned object after complex occlusions disappear.

Dangerous Abandoned Object Extraction Model Using Area Variation Characteristics (면적의 변화 특성을 이용한 위험 유기물 형상 추출 모델)

  • Kim, Won
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.8
    • /
    • pp.39-45
    • /
    • 2020
  • Recently the terrors have been attempted in the public places of the nations such as United states, England and Japan by explosive things, toxic materials and so on. It is understood that the method in which dangerous objects are put in public places is one of the difficult types in detection. While there are the cameras recording videos for many spots in public places, it is very hard for the security personnel to monitor every videos. Nowadays the smart softwares which can analyzing videos automatically are utilized to detect abandoned objects. The method by Lin et al. shows comparatively high detection rates for abandoned objects but it is not easy to obtain the shape information because there is a tendency that the number of the pixels decreases abruptly along the time goes due to the characteristics of short-term background images. In this research a novel method is proposed to successfully extract the shape of the abandoned object by analysing the characteristics of area variation. The experiment results show that the proposed method has better performance in extracting shape information in comparison with the precedent approach.

Realtime Theft Detection of Registered and Unregistered Objects in Surveillance Video (감시 비디오에서 등록 및 미등록 물체의 실시간 도난 탐지)

  • Park, Hyeseung;Park, Seungchul;Joo, Youngbok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1262-1270
    • /
    • 2020
  • Recently, the smart video surveillance research, which has been receiving increasing attention, has mainly focused on the intruder detection and tracking, and abandoned object detection. On the other hand, research on real-time detection of stolen objects is relatively insufficient compared to its importance. Considering various smart surveillance video application environments, this paper presents two different types of stolen object detection algorithms. We first propose an algorithm that detects theft of statically and dynamically registered surveillance objects using a dual background subtraction model. In addition, we propose another algorithm that detects theft of general surveillance objects by applying the dual background subtraction model and Mask R-CNN-based object segmentation technology. The former algorithm can provide economical theft detection service for pre-registered surveillance objects in low computational power environments, and the latter algorithm can be applied to the theft detection of a wider range of general surveillance objects in environments capable of providing sufficient computational power.

A Study on the Implementation of Real-Time Marine Deposited Waste Detection AI System and Performance Improvement Method by Data Screening and Class Segmentation (데이터 선별 및 클래스 세분화를 적용한 실시간 해양 침적 쓰레기 감지 AI 시스템 구현과 성능 개선 방법 연구)

  • Wang, Tae-su;Oh, Seyeong;Lee, Hyun-seo;Choi, Donggyu;Jang, Jongwook;Kim, Minyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.571-580
    • /
    • 2022
  • Marine deposited waste is a major cause of problems such as a lot of damage and an increase in the estimated amount of garbage due to abandoned fishing grounds caused by ghost fishing. In this paper, we implement a real-time marine deposited waste detection artificial intelligence system to understand the actual conditions of waste fishing gear usage, distribution, loss, and recovery, and study methods for performance improvement. The system was implemented using the yolov5 model, which is an excellent performance model for real-time object detection, and the 'data screening process' and 'class segmentation' method of learning data were applied as performance improvement methods. In conclusion, the object detection results of datasets that do screen unnecessary data or do not subdivide similar items according to characteristics and uses are better than the object recognition results of unscreened datasets and datasets in which classes are subdivided.

Abnormal Behavior Detection Based on Adaptive Background Generation for Intelligent Video Analysis (지능형 비디오 분석을 위한 적응적 배경 생성 기반의 이상행위 검출)

  • Lee, Seoung-Won;Kim, Tae-Kyung;Yoo, Jang-Hee;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.111-121
    • /
    • 2011
  • Intelligent video analysis systems require techniques which can predict accidents and provide alarms to the monitoring personnel. In this paper, we present an abnormal behavior analysis technique based on adaptive background generation. More specifically, abnormal behaviors include fence climbing, abandoned objects, fainting persons, and loitering persons. The proposed video analysis system consists of (i) background generation and (ii) abnormal behavior analysis modules. For robust background generation, the proposed system updates static regions by detecting motion changes at each frame. In addition, noise and shadow removal steps are also were added to improve the accuracy of the object detection. The abnormal behavior analysis module extracts object information, such as centroid, silhouette, size, and trajectory. As the result of the behavior analysis function objects' behavior is configured and analyzed based on the a priori specified scenarios, such as fence climbing, abandoning objects, fainting, and loitering. In the experimental results, the proposed system was able to detect the moving object and analyze the abnormal behavior in complex environments.