• Title/Summary/Keyword: Abandoned mine drainage

Search Result 120, Processing Time 0.028 seconds

Seasonal Variation and Natural Attenuation of Trace Elements in the Stream Water Affected by Mine Drainage from the Abandoned Indae Mine Areas (인대광산 지역 광산배수에 영향을 받은 하천에서 미량원소의 계절적인 수질변화와 자연저감)

  • Kang, Min-Ju;Lee, Pyeong-Koo;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.40 no.3 s.184
    • /
    • pp.277-293
    • /
    • 2007
  • Seasonal and spatial variations in the concentrations of trace elements, pH and Eh were found in a creek watershed affected by mine drainage and leachate from several waste rock dumps within the As-Pb-rich Indae mine site. Because of mining activity dating back to about 40 years ago and rupture of the waste rock dumps, this creek was heavily contaminated. Due to the influx of leachate and mine drainage, the water quality of upstream reach in this creek was characterized by largest seasonal and spatial variations in concentrations of Zn(up to $5.830 mg/{\ell}$), Cu(up to $1.333 mg/{\ell}$), Cd(up to $0.031 mg/{\ell}$) and $SO_4^{2-}$(up to $173 mg/{\ell}$), relatively acidic pH values (3.8-5.1) and highly oxidized condition. The most abundant metals in the leachate samples were in order of Zn($0.045-13.909 mg/{\ell}$), Fe($0.017-8.730mg/{\ell}$), Cu($0.010-4.154mg/{\ell}$) and Cd($n.d.-0.077mg/{\ell}$), with low pH(3.1-6.1), and high $SO_4^{2-}$(up to $310 mg/{\ell}$). The mine drainage also contained high concentrations of Zn, Cu, Cd and $SO_4^{2-}$ and remained constantly near-neutral pH values(6.5-7.0) in all the year. While the leachate and mine drainage might not affect short-term fluctuations in flow, it may significantly influence the concentrations of chemicals in the stream. The abundance and chemistry of Fe-(oxy)hydroxide within this creek indicated that the Fe-(oxy)hydroxide formation could be responsible for some removal of trace elements from the creek waters. Spatial and seasonal variations along down-stream reach of this creek were caused largely by the influx of water from uncontaminated tributaries. In addition, the trace metal concentrations in this creek have been decreased nearly down to the background level at a short distance from the discharge points without any artificial treatments after hydrologic mixing in a tributary. The nonconservative(i.e. precipitation, adsorption, oxidation, dissolution etc.) and conservative(hydrologic mixing) reactions constituted an efficient mechanism of natural attenuation which reduces considerably the transference of trace elements to rivers.

Characteristics of Mine Liner According to the Replacement Ratio of Nano-Silica and Silica-Fume (나노실리카 및 실리카흄 대체율에 따른 차수재의 특성)

  • Kang, Suk-Pyo;Lee, Hee-Ra;Kang, Hye-Ju;Nam, Seong-Young;Kim, Chun-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.66-73
    • /
    • 2019
  • Approximately 80% of the mines are vacated or abandoned mines and are mostly left without suitable environmental treatment facilities. In the area around the abandoned mine site, problems such as drainage of acidic city drainage and leakage of leachate occur, and ground subsidence caused by this can cause a safety accident due to sink hole occurrence. In this study, flow, compressive strength, water uptake, pore and hydration characteristics were investigated to investigate the basic properties of liner and cover material based on the replacement ratio of nano silica and silica fume in the existing blast - furnace slag fine powder. As a result, as the substitution ratio of nano silica and silica fume increased, the flow and compressive strength of nano silica specimens increased and the absorption rate decreased. In the case of pore characteristics, the amount of pores decreased as the substitution ratio of nano silica and silica fume increased. Especially, the capillary porosity of 10-1,000 nm diameter decreased. Ray diffraction analysis and SEM measurement showed that the peak positions of the hydration products were almost the same when compared with the 5% alternative test samples of Plain and silica fume.

Neutralization of Pyrophyllite Mine Wastes by the Lime Cake By-Product (부산석회를 이용한 납석광산 폐석의 중화처리)

  • Yoo, Kyung-Yoal;Cheong, Young-Wook;Ok, Yong-Sik;Yang, Jae-E.
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.215-221
    • /
    • 2005
  • Numerous abandoned or closed mines are present in the steep mountain valleys in Korea due to the depression of the mining industry since the late 1980s. From the mines, enormous amounts of wastes were dumped on the slopes causing sedimentation and acid mine drainage to be discharged directly into streams causing detrimental effects on surrounding environment. Objective of this research was to evaluate the feasibility of the lime cake by-product from the soda ash production (Solvay process) to neutralize the pyrophyllite mine wastes, which have discharged the acid drainage to soil and stream in the watershed. The pH of mine wastes was strongly acidic at pH 3.67 containing over 16% of $Al_2O_3$ and 11% of $Fe_2O_3$. Whereas the lime cake by-product was strongly basic at pH 9.97 due to high contents of CaO, MgO and $CaCl_2$ as major components. Column experiments were conducted to test the neutralizing capacity of the lime cake by-product for the acidic pyrophyllite mine wastes. The column packed with the wastes (control) was treated with the lime cake by-product, calcium carbonate, the dressing soil or combination. The distilled water was eluted statically through the column and the leachate was collected for the chemical analyses. Treatments of the mine wastes with the lime cake by-product (or calcium carbonate) as mixtures increased pH of the leachate from $3.5{\sim}4.0\;to\;7{\sim}8$. Concentrations of Fe and Al in the leachate were also decreased below 1.0 mg $L^{-1}$. A Similar result was observed at the combined treatments of the mine waste, the lime by-product (or calcium carbonate) and the dressing soil. The results indicated that the lime cake by-product could sufficiently neutralize the acid drainage from the pyrophyllite mine wastes without dressing soils.

The Acid Rock Drainage and Hydraulic Characteristics of the Waste Rock Dump (폐석적치장의 산성배수발생 및 수리특성 분석)

  • Cheong, Young Wook;Ji, Sang Woo;Yim, Gil Jae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.4
    • /
    • pp.13-24
    • /
    • 2004
  • This study was carried out to plan the prevention of the generation and discharge of Acid Rock Drainage (ARD). The Acid Base Accounting(ABA) test was performed for geological materials such as pit wall, waste rock and stream sediments near the Imgi abandoned pyrophyllite mine in Busan, Korea. In addition, hydraulic characteristics were tested with the disk tension infiltrometer around the waste rock dump. Maximum Potential Acidity(MPA) of geological materials near the Imgi mine was 246.942kg $H_2SO_4/t$, and maximum Acid Neutralising Capacity(ANC) was 8.7kg $H_2SO_4/t$. These results indicate the pit wall and waste rock, except most of stream sediments are acid generating geological materials. These have salt and free hydrogen ion which resulted from oxidation of sulfides. Hence they could be convert rain water to acid rock drainage. Although the waste rock dump of the Imgi mine have very low infiltration rate, slopes of the waste rock dump have many "V" type erosion gullies and multi-layers. These gullies and multi-layers have coarse clastic particle layers which have very large hydraulic conductivity. Through this coarse clastic particle layer a large part of rain flow into ground. And also this layer could function as aeration path which induced oxidation of sulfide minerals and generation of ARD continuously.

  • PDF

Characteristics of the Dalseong Acid Mine Drainage and the Role of Schwertmannite (달성폐광산 산성광산배수의 발달특징과 슈베르트마나이트의 역할)

  • Choo, Chang-Oh;Jeong, Gyo-Cheol;Lee, Jin-Kook
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.187-196
    • /
    • 2007
  • The Dalseong acid mine drainage were studied focused on the characters of schwertmannite that controls geochemistry of the stream. Besides chemical analysis of stream water, particle size analysis, XRD SEM and TEM were performed on precipitates of streams and on wasted metalliferous ores. The AMD discharged from the abandoned mine reveals a decrease of pH and EC downward stream. Euhedral sulfur occurs as equigranular aggregates on the altered pyrite while fine acicula goethite coalesces to form cross, star, or starfish-like shapes. Water chemistry plotted on the Eh-pH diagram shows that schwertmannite and ferrihydrite are stable phases. Reddish brown precipitates consist of mostly schwertmannite with less goethite, whereas yellowish brown precipitates are composed of geothite with less schwertmannite. The particle size of precipitates ranges $d(0.1)\;0.861{\mu}m{\sim}3.769{\mu}m,\;d(0.5)\;3.984{\mu}m{\sim}15.255{\mu}m,\;and\;d(0.9)\;9.875{\mu}m{\sim}56.726{\mu}m$. Schwertmannite is characterized by equigranular spheric form. Pincushion or spicule with 100nm width and $200{\sim}300nm$length form on schwertmannite sphere with radial growth patterns. It is highly probable that reddish or yellowish brown precipitates formed in many AMDs may contain schwerhnannite. Because it can serve as sink for removing heavy elements by adsorption in AMD system, there is a need to correctly identify schwertmannite in precipitates and to characterize its phase stability.

Field Experiment on Iron and Aluminum Removal from Acid Mine Drainage Using an Apatite Drain System (인회석 배수시스템을 이용한 산성수의 철 및 알루미늄 제거에 대한 현장경험)

  • Choi, Jung-Chan;West, Terry R.
    • Economic and Environmental Geology
    • /
    • v.29 no.3
    • /
    • pp.315-323
    • /
    • 1996
  • An apatite drain was constructed on September 30, 1994 at the Green Valley Abandoned Coal Mine site near Terre Haute in west central Indiana. The primary objective of this experiment is to evaluate the long-term ability of the apatite drain to mitigate acid mine drainage (AMD) under field conditions. The drain 9 m long, 3.3 m wide, and 0.75 m deep, contain 95 rum to No. 30 mesh-size apatite ore (francolite) and receive AMD seepage from reclaimed gob piles, and designed according to the laboratory testing. The apatite drain was covered with limestone riprap and filter fabric to protect the drainage system from stormwater and siltation. The drain consists of about 50 metric tons of apatite ore obtained from a phosphate mine in Florida. A gabion structure was constructed downstream of the apatite drain to create a settling pond to collect precipitates. Apatite effectively removed iron up to 4,200 mg/l, aluminum up to 830 mg/l and sulfate up to 13,430 mg/l. The pH was nearly constant for the influent and effluent, ranging between 3.1 and 4.3. Flow rate measured at the gabion structure ranged from 3 to 4.5 l/m. Precipitates of iron and aluminum phosphate (yellow and white suspendid solids) continued to accumulate in the settling pond.

  • PDF

Characterization and Two-Phase Neutralization of Acid Mine Drainage (두 단계 중화적정에 의한 산성 광산 유출수 중의 중금속 제거)

  • Jeong, Byeong-Ryong;Chung, Jong-Bae
    • Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.73-78
    • /
    • 1999
  • Acid mine drainage (AMD) results from sulfuric acid produced by the oxidation of pyrite, and contains large amounts of toxic elements. In the neutralization of AMD, iron and aluminum hydroxides are the major precipitates and those two can be separated with two-phase neutralization. In this study, removal of toxic elements by the two phases of neutralization was investigated using an AMD collected from the abandoned antimony mine in Gachang, Taegu. Contents of As, Cd, Cu, Mn, Pb and Zn in the AMD were higher than the criteria of river water quality or permissible waste water discharge. In the first phase, the AMD was neutralized to several % (25, 50, 75, 100, and 125) of $Fe(OH)_3$ equivalence point with solid $Ca(OH)_2$. In the second phase, the supernatant of the first phase neutralization was titrated to pH 7.5. After neutralization of the AMD to 100% of the $Fe(OH)_3$, equivalence point, most of Fe and Pb were removed but levels of As, Cd, Cu, Ni, Mn, and Zn were not reduced in the supernatant solution. In the second phase neutralization, levels of those toxic elements in the supernatants dropped below the wastewater discharge or river water quality criteria. This result suggests that the precipitate formed in the first phase of the neutralization process may be disposed without any special cares. Thus the two-phase neutralization scheme can reduce the cost of disposing precipitates containing toxic metals in comparison with the monophase neutralization scheme.

  • PDF

Anaerobic Biological Treatment of Abandoned Metallic Mine Drainages with Limestone and Recycling of Papermill and Livestock Sludge (석회석과 제지·축산슬러지를 재활용한 폐금속광산폐수의 혐기성 처리)

  • Kim, Eun-Ho;Kim, Hyeong-Seok;Sung, Nak-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.463-473
    • /
    • 2000
  • This research was carried out to investigate chemical pretreatment using limestone in treating abandoned metallic mine drainage with anaerobic biological treatment, and to estimate application of papermill and livestock sludge as carbon sources for SRB (Sulfate Reducing Bacterial. Capacity of anaerobic limestone bed was steeply decreased. But if limestone was utilized as pretreatment process in treating them with anaerobic biological treatment. it could look forward to stabilize system because it did initally neutralize them. Effluent SCOD in R-4 was lower than R-l~R-3 in inital HRT 5day but its concentration was high in HRT 1day after passed time. Therefore in point of durability and supply of organic matter. it seemed that R-4 was useful became organic matter in R-4 was not consumed by excessive degradation within short period. In all reactors, pH was suitable for SRB growth in whole HRT, but on the evidence of ORP, SRB was active after HRT 2day. Fixation trend of heavy meta s showed high as $SO_4{^{2-}}$ reduction efficiency increased, and $SO_4{^{2-}}$ reduction and fixation of heavy metals were relatively high in HET 2day.

  • PDF

Effect of Chemical Amendments on Soil Biological Quality in Heavy Metal Contaminated Agricultural Field

  • Kim, Yoo Chul;Hong, Young Kyu;Oh, Se Jin;Oh, Seung Min;Ji, Won Hyun;Yang, Jae E.;Kim, Sung Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.146-152
    • /
    • 2015
  • Heavy metal pollution has been a critical problem in agricultural field near at the abandoned metal mines and chemical amendments are applied for remediation purpose. However, biological activity can be changed depending on chemical amendments affecting crop productivity. Main purpose of this research was to evaluate biological parameters after applying chemical amendments in heavy metal polluted agricultural field. Result showed that soil respiration (SR) and microbial biomass carbon (MBC) were changed after chemical amendments were applied. Among three different amendments, lime stone (LS), steel slag (SS), and acid mine drainage sludge(AMDS), AMDS had an effect to increase SR in paddy soil. Comparing to control ($93.98-170.33mg\;kg^{-1}day^{-1}$), average of 30% increased SR was observed. In terms of MBC, SS had an increased effect in paddy soil. However, no significant difference of SR and MBC was observed in upland soil after chemical amendment application. Overall, SR can be used as an indicator of heavy metal remediation in paddy soil.

장풍 폐광산의 산성광산폐수에 의한 침출수 유동에 대한 지구물리 및 지화학탐사자료의 상관해석

  • Kim, Ji-Su;Han, Su-Hyeong;Choe, Sang-Hun;Lee, Gyeong-Ju;Lee, In-Gyeong;Lee, Pyeong-Gu
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.1
    • /
    • pp.19-27
    • /
    • 2002
  • Geophysical surveys(self-potential, electromagnetic, electrical resistivity, and seismic refraction methods) were performed to delineate the flow channel of leachate from a AMD (acid mine drainage) by correlating the anomalies to geochemical characteristics at an abandoned mine (Jangpoong mine). The geophysical responses attempted to be correlated with water sample analysis data(pH, EC, heavy metals, ${SO_4}^{-2}$). Electrical dipole-dipole resistivity sections represent the low-resistivity zone trending northwest, which indicates the leachate flow by AMD along the contact of the mine waste rock dump and the bedrock. From the overall points of geophysical and geochemical anomalies, it is summarized that the flow channel of leachate by AMD can be successfully imaged with composite interpretations on the geophysical and geochemical studies.

  • PDF