Seasonal Variation and Natural Attenuation of Trace Elements in the Stream Water Affected by Mine Drainage from the Abandoned Indae Mine Areas

인대광산 지역 광산배수에 영향을 받은 하천에서 미량원소의 계절적인 수질변화와 자연저감

  • Kang, Min-Ju (Department of Geological and Environmental Hazards, Korea institute of Geosciene and Mineral Resources) ;
  • Lee, Pyeong-Koo (Department of Geological and Environmental Hazards, Korea institute of Geosciene and Mineral Resources) ;
  • Choi, Sang-Hoon (Department of Earth mfd Environmental Sciences, Chungbuk Notional University)
  • 강민주 (한국지질자원연구원 지질환경재해연구부) ;
  • 이평구 (한국지질자원연구원 지질환경재해연구부) ;
  • 최상훈 (충북대학교 지구환경과학과)
  • Published : 2007.06.28

Abstract

Seasonal and spatial variations in the concentrations of trace elements, pH and Eh were found in a creek watershed affected by mine drainage and leachate from several waste rock dumps within the As-Pb-rich Indae mine site. Because of mining activity dating back to about 40 years ago and rupture of the waste rock dumps, this creek was heavily contaminated. Due to the influx of leachate and mine drainage, the water quality of upstream reach in this creek was characterized by largest seasonal and spatial variations in concentrations of Zn(up to $5.830 mg/{\ell}$), Cu(up to $1.333 mg/{\ell}$), Cd(up to $0.031 mg/{\ell}$) and $SO_4^{2-}$(up to $173 mg/{\ell}$), relatively acidic pH values (3.8-5.1) and highly oxidized condition. The most abundant metals in the leachate samples were in order of Zn($0.045-13.909 mg/{\ell}$), Fe($0.017-8.730mg/{\ell}$), Cu($0.010-4.154mg/{\ell}$) and Cd($n.d.-0.077mg/{\ell}$), with low pH(3.1-6.1), and high $SO_4^{2-}$(up to $310 mg/{\ell}$). The mine drainage also contained high concentrations of Zn, Cu, Cd and $SO_4^{2-}$ and remained constantly near-neutral pH values(6.5-7.0) in all the year. While the leachate and mine drainage might not affect short-term fluctuations in flow, it may significantly influence the concentrations of chemicals in the stream. The abundance and chemistry of Fe-(oxy)hydroxide within this creek indicated that the Fe-(oxy)hydroxide formation could be responsible for some removal of trace elements from the creek waters. Spatial and seasonal variations along down-stream reach of this creek were caused largely by the influx of water from uncontaminated tributaries. In addition, the trace metal concentrations in this creek have been decreased nearly down to the background level at a short distance from the discharge points without any artificial treatments after hydrologic mixing in a tributary. The nonconservative(i.e. precipitation, adsorption, oxidation, dissolution etc.) and conservative(hydrologic mixing) reactions constituted an efficient mechanism of natural attenuation which reduces considerably the transference of trace elements to rivers.

비소와 납 함유량이 높은 인대광산 지역에 분포하는 여러 폐광석 적치장으로부터 유출된 침출수와 광산배수에 영향을 받은 수계에서 미량원소, pH 및 산화환원전위차의 계절적 및 공간적인 변화가 관찰되었다. 채광활동이 약 40년전이었고 폐광석 적치장이 유실되었기 때문에 이 수계는 심각하게 오염된 상태이었다. 침출수와 광산배수의 유입으로 인하여 수계 상류구간의 지표수는 비교적 약 산성 및 강한 산화환경 특성이 있으며, 아연(최대 $5.830mg/{\ell}$), 구리(최대 $1.333mp/{\ell}$), 카드뮴(최대 $0.031mg/{\ell}$) 및 황산염(최대 $173mg/{\ell}$) 함량의 계절적 및 공간적인 변화가 큰 특징이 있었다. 침출수에서 가장 함량이 높은 원소의 순서로 나열하면 아연($0.045-13.909mg/{\ell}$), 철($0.017-8.730mg/{\ell}$), 구리($0.010-4.154mg/{\ell}$) 및 카드뮴($n.d.-0.077mg/{\ell}$)이며, pH는 낮으며 황산염 함량(최대 $310mp/{\ell}$)은 높았다. 광산배수도 아연, 구리, 카드뮴 및 황산염 함량이 높았으며, pH는 연중 중성으로 일정하게 유지되었다. 침출수와 광산배수가 단기적인 수계 유량의 변동에 영향을 줄 수 없을 지라도 수계의 화학원소 함량에 강한 영향을 주었다. 수계 내 철(수)산화광물이 풍부하다는 것과 화학적 특성은 철(수)산화광물의 침전이 이 수계의 지표수로부터 미량원소를 제거하는 데 중요한 역할을 하고 있음을 지시하였다. 이 수계의 하류 구간에서의 공간적 및 계절적인 변화는 오염되지 않은 지류로부터 유입되는 지표수에 의해 크게 기인하였다. 또한, 이 구간에서의 미량원소의 함량은 어떠한 인위적인 처리 없이도 광산배수와 침출수가 배출되는 지점으로부터 가까운 거리에서 지류와 수리학적으로 혼합되어진 후 배경값과 거의 유사한 함량으로 낮아졌다. 비보존성 반응(즉 침전, 흡착, 산화, 용해 등)과 보존성 반응(예: 수리학적 혼합)은 미량원소가 강으로 이동되는 것을 크게 감소시키는 효과적인 자연저감 기작이었다.

Keywords

References

  1. Berger, A.C., Bethke, C.M. and Krumhansl, J.L. (2000) A process model of natural attenuation in drainage from a historic mining district. Appl. Geochem., v. 15, p. 655-666 https://doi.org/10.1016/S0883-2927(99)00074-8
  2. Bowell, R.J. and Bruce, I. (1995) Geochemistry of iron ochres and mine waters from Levant Mine, Cornwall. Appl. Geochim., v. 10, p. 237-250 https://doi.org/10.1016/0883-2927(94)00036-6
  3. Buffle, J., Filella, M., Stoll, S. and Zhang, J. (1995) Nature and behavior of colloids in surface waters (abstract). Terra Abstract, v. 7, p. 247
  4. Chapman, B.M., Jones, D.R. and Jung, R.F. (1983) Processes controlling metal ion attenuation in acid mine drainage stream. Geochim. Cosmochim., Acta 47, p. 1957-1973 https://doi.org/10.1016/0016-7037(83)90213-2
  5. Carbonell-Barrachina, A.A., Rocamora, A., Garcia-Gomis, C., Martinez-Sanchez, F. and Burlo, F. (2004) Arsenic and zinc biogeochemistry in pyrite mine waste from the Aznalcollar enbironmental disaster. Geoderma, v. 122, p. 195-20 https://doi.org/10.1016/j.geoderma.2004.01.008
  6. Courtin-Nomade, A., Bril, H., Neel, C. and Lenain, J.F. (2003) Arsenic in iron cements developed within tailings of a former metalliferous mine-Enguiales, Aveyron. France. Appl. Geochem., v. 18, p. 395-408 https://doi.org/10.1016/S0883-2927(02)00098-7
  7. Dold, B., Fontbote, L. (2002) A mineralogical and geochemical study of element mobility in sulfide mine tailings of Fe oxide Cu-Au deposits from the Punta del Cobre belt, northern Chile. Chem. Geol., v. 189, p. 135-163 https://doi.org/10.1016/S0009-2541(02)00044-X
  8. Frau, F. (2000) The formation-dissolution-precipitation cycle of melanterite at the abandoned pyrite mine of Genna Luas in Sardinia, Italy: environmental implications. Mineral. Mag., v. 64, p. 995-1006 https://doi.org/10.1180/002646100550001
  9. Fukushi, K., Sasaki, M., Sate, T., Yanase, N., Amano, H. and Ikeda, H. (2003) A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Appl. Geochem., v. 18, p. 1267-1278 https://doi.org/10.1016/S0883-2927(03)00011-8
  10. Hudson-Edwards, K.A., Schell, C. and Macklin, M.G. (1999) Mineralogy and geochemistry of alluvium contaminated by metal minig in the Rio Tionto area, southwest Spain. Appl. Geochim., v. 14, p. 1015-1030 https://doi.org/10.1016/S0883-2927(99)00008-6
  11. Kang, M.J., Lee, P.K., Dhoi, S.H. and Shin, S.C. (2003) Heavy metal retention by secondary minerals in mine waste rocks at the abandoned Seobo mine. Econ. Environ. Geol., v. 36, p. 177-189
  12. Kang, M.J. and Lee, P.K. (2005) Mechanisms of immobilization and leaching characteristics of arsenic in the waste rocks and tailings of the abandoned mine areas. Econ. Environ. Geol., v. 38, p. 499-512
  13. Kang, M.J., Lee, P.K. and Choi, S.H. (2006) Characteristics of Geochemical Behaviors of Trace Metals in Drainage from Abandoned Sechang Mine. Econ, Environ. Geol., v. 39, p. 213-227
  14. Kimball, B.A., Broshears, R.A., McKnight, D.M. and Bencala, K.E. (1994) Effects of instream pH modification on transport of sulfide-oxidation products. In: Alpers, C.N. and Blowes, D.W., Editors, 1994. The Environmental Geochemistry of Sulfide Oxidation, Am. Chern. Soc. Symp. Series, v. 550, p. 224-243
  15. KORES (1987) Ore deposits of Korea. v. 10, p. 664-665
  16. Lee, P.K., Baillif, P. and Touray, J.C. (1997) Geochemical behaviour and relative mobility of metals(Mn, Cd, Zn and Pb) in recent sediments of a retention pond along the A-71 motorway in Sologne, France. Environmental Geology, v. 32, p. 142-152 https://doi.org/10.1007/s002540050203
  17. Lee, P.K., Kang, M.J., Choi, S.H. and Touray, J.C. (2005) Sulfide oxidation and the natural attenuation of arsenic and trace metals in the waste rocks of the abandoned Seobo tungsten mine, Korea. Appl. Geochem., v. 20, p. 1687-1703 https://doi.org/10.1016/j.apgeochem.2005.04.017
  18. Mascaro, I., Benvenuti, B., Corsini, F., Costagliola, P., Lattanzi, P., Parrini, P. and Tanelli, G. (2001) Mine wastes at the polymetallic deposit of Fenice Capanne(southern Tuscany, Italy). Mineralogy, geochemistry, and environmental impact, Environ. Geol., v. 41, p. 417-429 https://doi.org/10.1007/s002540100408
  19. McGregor, R.G., Blowes, D.W., Jambor, J.L., Robertson, W.D. (1998) The solid-phase controls on the mobility of heavy metals at the Copper Cliff tailings area, Sudbury, Ontario, Canada. J. Contaminant Hydrol., v. 33, p. 247-271 https://doi.org/10.1016/S0169-7722(98)00060-6
  20. Shaw, S.C., Groat, L.A., Jambor, J.L., Blowes, D.W., Hanton-Fong, C.J. and Stuparyk, R.A. (1998) Mineralogical study of base metal tailings with various sulfide contents, oxidized in laboratory columns and field lysimeters. Environ. Geol., v. 33, p. 209-217 https://doi.org/10.1007/s002540050239