• Title/Summary/Keyword: Abandoned Mine Area

Search Result 189, Processing Time 0.053 seconds

Forest Environment Degradation and Rehabilitation of Copper Mine Area in Ashio, Japan (일본 아시오(足尾) 銅鑛山地域의 삼림황폐와 삼림환경 복구사업에 관한 분석)

    • Korean Journal of Environment and Ecology
    • /
    • v.15 no.3
    • /
    • pp.276-285
    • /
    • 2001
  • This report surveyed degradation of forest environment and rehabilitation in Ashio of Japan. Since 1880, a large scale forestry in this area has been destroyed by sooty smoke, and the local government invested heavily to rehabilitate the damaged forestry and denuded mountains. These degradations are due to complex operations, such as sulfurous acid gas from copper refinery, forest fires, steep slope and disadvantageous climate. The rehabilitation works on degraded forestry(2,399ha) were undertaken by tree planting fur three years from 1897. However, forest degradation and disasters were continued, and the total damaged areas were about 2,400~3,000ha in 1956. A Manual labor method, a Helicopter method and also Combination of manual labor and helicopter method had been adopted to rehabilitation works from 1945 to 1996, while 828.19ha of the degraded mountains was rehabilitated. Total investment for those projects was 80 billion yen. A debris control dam, a soil arresting structure, a vegetation-block, a vegetation sack measures and tree planting have implemented significantly fur the method of rehabilitation. An objective of manual labor works is a complete rehabilitation on each place through 3 stage working. The revived green areas accounted fur 49% of the total, and the entire afforest areas are less than 10%. In coming 25 years, an amount of 21.3 billion yen will be invested to rehabilitate 564ha of degraded mountain lands. However, it is impossible to estimate that how long it will take until the whole degraded mountain lands are completely rehabilitated. Rehabilitation works in Ashio may be applicable to environmental restoration and revegetation in the abandoned coal-mine lands of Korea.

  • PDF

Comparison of Human Health Risk Assessment of Heavy Metal Contamination from Two Abandoned Metal Mines Using Metal Mine-specific Exposure Parameters (국내 폐금속 광산에 특화된 노출인자를 이용한 두 폐금속 광산 중금속 오염에 대한 인체위해성평가 비교)

  • Lim, Tae-Yong;Lee, Sang-Woo;Cho, Hyen Goo;Kim, Soon-Oh
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.6
    • /
    • pp.414-431
    • /
    • 2016
  • There are numerous closed and abandoned mines in Korea, from which diverse heavy metals (e.g., As, Cd, Cu, Pb, Zn) are released into the surrounding soil, groundwater, surface water, and crops, potentially resulting in detrimental effects on the health of nearby residents. Therefore, we performed human risk assessments of two abandoned metal mines, Yanggok (YG) and Samsanjeil (SJ). The exposure parameters used in this assessment were specific to residents near mines and the included exposure pathways were relevant to areas around metal mines. The computed total excess carcinogenic risks for both areas exceeded the acceptable carcinogenic risk ($1{\times}10^{-6}$), indicating that these areas are likely unsafe due to a carcinogenic hazard. In contrast, the non-carcinogenic risks of the two areas differed among the studied receptors. The hazard indices were higher than the unit risk (=1.0) for male and female adults in YG and male adults in SJ, suggesting that there are non-carcinogenic risks for these groups in the study areas. However, the hazard indices for children in YG and female adults and children in SJ were lower than the unit risk. Consumption of groundwater and crops grown in the area were identified as major exposure pathways for carcinogenic and non-carcinogenic hazards in both areas. Finally, the dominant metals contributing to carcinogenic and non-carcinogenic risks were As and As, Cu, and Pb, respectively. In addition, the carcinogenic and non-carcinogenic risks of YG were evaluated to be 10 and 4 times higher than those of SJ, respectively, resulted from the relatively higher exposure concentration of As in groundwater within SJ area. Because of lacking of several exposure parameters, some of average daily dose (ADD) could not be computed in this study. Furthermore, it is likely that the ADDs of crop-intake pathway included some errors because they were calculated using soil exposure concentrations and bioconcentration factor (BCF) rather than using crop exposure concentrations.

Site Investigation of Abandoned Coal Mine and Stability of Road Tunnel (도로터널공사구간의 폐갱도 정밀조사 및 터널의 안정성 평가)

  • Shin, Hee-Soon;Kim, Jung-Yul;Lee, Byung-Joo;Han, Kong-Chang;Sunwoo, Choon;Song, Won-Kyung;Synn, Joong-Ho;Kim, Yoo-Sung;Park, Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.17-24
    • /
    • 2001
  • Several underground cavities were found during construction of a road tunnel in 600m length . The area belong to Whasoon coalfield where extensive ground subsidences have occurred. It is necessary to find other underground cavities which might be located just near the road tunnel for safety, The field surveys and laboratory tests were conducted such as surface geological survey(672m), surface reflection seismic exploration(399m), drilling test(3 NX holes), 9 laboratory tests for rocks, 3 boreholes televiewer tests, reflection seismic exploration in tunnel(2, 342m). To estimate the effects of underground cavities on the road tunnel, 3 geological section were analysed with FLAC-2D modeling. The effects of the ground reinforcement were also analysed.

  • PDF

A Study on the Effect of Soil Wineral and Component of the Pore Fluid to the Electrical Resistivity (흙의 구성광물과 간극수의 성분이 비저항값에 미치는 영향에 관한 연구)

  • Yoon, Chun-Kyeong;Yu, Chan;Yoon, Kil-Lim
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.59-64
    • /
    • 1998
  • The environmental problem of the rural area has been accelerated in soil as well as water. Soil contamination is usually caused by improper operation of landfills, abandoned mine fields, accidental spills, and illegal dumpings. Once soil contamination is initiated, pollutants migrate and may cause groundwater contamination which takes much effort for remediation. Early detection, therefore, is important to prevent further contamination. Electrical resistivity method was used to detect soil contamination, but it was not effective to the heterogeneous condition. Static cone penetrometer test (CPT) has been used widely to investigate geotechnical properties of the underground. In this study, electrical resistivity method and CPT are combined to improve the applicability of it. The pilot test was performed to examine the variation of electrical resistivity with different soil minerals and pore fluid characteristics. Soil samples used were poorly graded sand, silty sandy soil, and weathered granite soil. For all the cases, electrical resistivity decreased with increasing of moisture content. Soil mineral also affected the electrical resistivity significantly. Above all, leachate addition in the pore fluid was very sensitive and caused decreasing of electrical resistivity markedly. It implies that electrical resistivity method can be applied to investigate pollutant plume effectively. This is specially sure when the sensors contact the contaminated soils directly. The CPT method involves cone penetration to the ground, therefore, underground contamination around the cone could be investigated effectively even for heterogeneous condition as it penetrates if electrical resistivity sensors are attached on the cone.

  • PDF

Variation of Rock Properties in Acidic Solution and Loading Condition (산성수 침수 및 하중 조건에서의 암석물성변화 연구)

  • Chung, Jae Hong;Park, Seung Hun;Lee, Seung Jun;Yu, Seungwon;Lee, Woo Hee;Kwon, Sangki
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.154-165
    • /
    • 2016
  • This paper presents experimental results to investigate the affects of acidic solution under loading condition on rock properties. In the experiment, the variations of various rock properties including effective porosity, thermal conductivity, and etc were investigated with different pHs of solution and magnitudes of loading. The results show that the rock property change was increased with low pH under loading. It was predicted that chemical reaction rate would be increased in low pH. Below the crack initiation stress of the rock specimen, the variation of rock property change was reduced with increased loading. It could be explained with the reduced chemical reaction area by the compressional loading if there is no crack generation.

Changes in Heavy Metal Phytoavailability by Application of Immobilizing Agents and Soil Cover in the Upland Soil Nearby Abandoned Mining Area and Subsequent Metal Uptake by Red Pepper (광산 인근 밭토양에서 중금속 안정화제 처리 및 복토층 처리에 의한 토양 중 중금속 식물유효도 변화 및 고추의 중금속 흡수)

  • Kim, Kwon-Rae;Park, Jeong-Sik;Kim, Min-Suk;Koo, Nam-In;Lee, Sang-Hwan;Lee, Jin-Su;Kim, Sung-Chul;Yang, Jae-E;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.864-871
    • /
    • 2010
  • At the current situation of continuous utilization of heavy metal contaminated upland for agricultural purpose in Korea, minimizing transport of heavy metals from soil to crops is important for securing safety of human health. The present study (in field scale) examined the efficiency of several soil amendments (dolomite, steel slag, lime, zeolite, and compost) on reduction of phytoavailable heavy metals (Cd, Cu, Pb, and Zn) in soil through comparison with no amendment treatment and clean soil cover treatment. For determination of the phytoavailability, 1 M $NH_4NO_3$ extraction and red pepper cultivation were introduced. Among the amendments, in general, dolomite and steel slag were the most effective in reduction of metal (Cd, Pb, and Zn) phytoavailability resulting in less accumulation of these metals in shoot and fruit of red pepper. However, dolomite and steel slag treatment was not as effective as clean soil cover treatment which showed the least metal accumulation in red pepper fruit. Nevertheless, with taking into account the cost, treatment of dolomite or steel slag can be competitive method because the current study showed that dolomite or steel slag treatment reduced accumulated heavy metal concentration effectively in both shoot and fruit of red pepper compared to those from control soil and the concentration in fruit was within the standard value (<0.2 mg $kg^{-1}$ for both Cd and Pb).

Mechanisms of Immobilization and Leaching Characteristics of Arsenic in the Waste Rocks and Tailings of the Abandoned Mine Areas (폐광산 지역 폐광석 및 광미에서 비소의 고정 메커니즘과 용출특성)

  • Kang Min-Mu;Lee Pyeong-Koo
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.499-512
    • /
    • 2005
  • EPMA determined that Fe(Mn)-(oxy)hydroxides and well-crystallized Fe-(oxy)hydroxides and could contain a small amount of As $(0.3-11.0\;wt.\%\;and\;2.1-7.4\;wt.\%\;respectively)$. Amorphous crystalline Fe-(oxy) hydroxide assemblages were identified as the richest in As with $28-36\;wt.\%$. On the ternary $As_2O_5-SO_3-Fe_2O_3$ diagram, these materials were interpreted here as 'scorodite-like'. Dissolved As was attenuated by the adsorption on Fe-(oxy) hydroxides and Fe(Mn)-(oxy) hydroxides and/or the formation of an amorphous Fe-As phase (maybe scorodite: $FeAsO_4\cdot2H_2O$). Leaching tests were performed in order to find out leaching characteristics of As and Fe under acidic conditions. At the initial pHs 3 and 5, As contents dissolved from tailings of the cheongyang mine significantly increased after 7 days due to the oxidation of As-bearing secondary minerals (up to ca. $2.4\%$ of total), while As of Seobo mine-tailing samples was rarely released (ca. $0.0-0.1\%$ of total). Dissolution experiments at an initial pH 1 liberated a higher amount of As (ca. $1.1-4.2\%$ of total for Seobo tailings, $1.5-14.4\%$ of total for Cheongyang tailings). In addition, good correlation between As and Fe in leached solutions with tailings was observed. The kinetic problems could be the important factor which leads to increasing concentrations of As in the runoff water. Release of As from Cheongyang tailings can potentially pose adverse impact to surface and groundwater qualities in the surrounding environment, while precipitation of secondary minerals and the adsorption of As are efficient mechanisms for decreasing the mobilities of As in the surface environment of Seobo mine area.

Remediation of Arsenic Contaminated soils Using a Hybrid Technology Integrating Bioleaching and Electrokinetics (생용출과 전기동력학을 연계한 통합기술을 이용한 비소 오염 토양의 정화)

  • Lee, Keun-Young;Kimg, Kyoung-Woong;Kim, Soon-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.2
    • /
    • pp.33-44
    • /
    • 2009
  • The objective of the study was to develop a hybrid technology integrating biological and physicochemical technologies to efficiently remediate arsenic contaminated lands such as abandoned mine area. The tailing soil samples contaminated with As at a high level were obtained from Songchon abandoned mine, and the content of arsenic and heavy metals as well as physicochemical properties and mineral composition were investigated. In addition, two sets of sequential extraction methods were applied to analyze chemical speciations of arsenic and heavy metals to expect their leachability and mobility in geoenvironment. Based on these geochemical data of arsenic and heavy metal contaminants, column-type experiments on the bioleaching of arsenic were undertaken. Subsequently, experiments on the hybrid process incorporating bioleaching and electrokinetics were accomplished and its removal efficiency of arsenic was compared with that of the individual electrokinetic process. With the results, finally, the feasibilty of the hybrid technnology was evaluated. The arsenic removal efficiencies of the individual electrokinetic process (44 days) and the hybrid process incorporating bioleaching (28 days) and electrokinetics (16 dyas) were measured 57.8% and 64.5%, respectively, when both two processes were operated in an identical condition. On the contrary, the arsenic removal efficiency during the bioleaching process (28 days) appeared relatively lower (11.8%), and the result indicates that the bioleaching process enhanced the efficacy of the electrokinetic process as a result of mobilization of arsenic rather than removed arsenic by itself. In particular, the arsenic removal rate of the electrokinetics integrated with bioleaching was observed over than 2 times larger than that obtained by the electrokinetics alone. From the results of the study, if the bioleaching which is considered a relatively economic process is applied sufficiently prior to electrokinetics, the removal efficiency and rate of arsenic can be significantly improved. Consequently, the study proves the feasibility of the hybrid process integrating both technologies.

Evaluation of Heavy Metal Absorption Capacity of Native Plant Species in an Abandoned Coal Mine in South Korea (폐석탄광산지역에 적용가능한 자생식물종의 중금속 흡수능력 평가)

  • Yang, Keum Chul
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.290-298
    • /
    • 2021
  • This study was conducted to evaluate the possibility of applying phytoremediation technology by investigating soil and native plants in waste coal landfills exposed to heavy metal contamination for a long period of time. The ability of native plants to accumulate heavy metals using greenhouse cultivation experiments was alse evaluated. Plants were investigated at an abandoned coal mine in Hwajeolyeong, Jeongseon, Gangwon-do. Two species of native plants (Carex breviculmis. R. B. and Salix koriyanagi Kimura ex Goerz.) located in the study area and three Korean native plants (Artemisia japonica Thunb. Hemerocallis hakuunensis Nakai., and Saussurea pulchella (Fisch.) Fisch.) were cultivated in a greenhouse for 12 weeks in artificially contaminated soil. Soils contaminated with arsenic and lead were generated with arsenic concentration gradients of 25, 62.5, 125, and 250 mg kg-1 and lead concentration gradients of 200, 500, 1000, and 2000 mg kg-1, respectively. Results showed that none of the five plants could survive at high arsenic concentration treatment (125 and 250 mg kg-1) and some plants died in 2000 mg kg-1 lead concentration treatment soil. The plant translocation factor (TF) was highest in H. hakuunensis in arsenic treatments, and A. japonica in lead treatments, respectively. The bioaccumulation factor (BF) of plants was more than 1 in all species in arsenic treatment, whereas it was highest in H. hakuunensis. BF for all species was less than 1 in lead treatment. Particularly, in 2000 mg kg-1 concentration lead treatment, A. japonica accumulated more than 1000 mg kg-1 lead and was expected to be a lead hyperaccumulator. In conclusion, A. japonica and H. hakuunensis were excellent in the accumulation of arsenic heavy metals, and S. koriyanagi was excellent in lead accumulation ability. Therefore, the above mentioned three plants are considered to be strong contenders for application of the phytoremediation technology.

A Study on Urinary Cadmium Concentration and Renal Indices of Inhabitant in an Abandoned Mine Area (폐광지성(廢鑛地城) 주민(住民)의 요중(尿中) 카드뮴 농도(濃度)와 현기능평가(賢機能評價))

  • Park, Jung-Duck;Park, Chan-Byung;Choi, Byung-Sun;Kang, Eun-Yong;Hong, Yeon-Pyo;Chang, Im-Won;Chun, Byung-Yeol;Yeh, Min-Hae
    • Journal of Preventive Medicine and Public Health
    • /
    • v.31 no.3 s.62
    • /
    • pp.424-439
    • /
    • 1998
  • Urinary cadmium is used as a sensitive indicator for internal Cd dose, and increased excretion of $N-acetyl-\beta-D-glucosaminidase(NAG)$, $\beta_2-microglobulin(MG)$ and total protein are useful indices for renal dysfunction by chronic exposure to Cd. The target group was 184 inhabitant(82 men and 102 women) in an abandoned mine area known as exposure to low level Cd. The control group was took 160 individuals(64 men and 96 women) in Cd not-exposed area. Urinary Cd concentration was significantly higher in the target group than the control. The geometric mean of urinary Cd for male was $2.56{\mu}g/\ell,\;2.80{\mu}g/g$ creatinine and $2.50{\mu}g/S.G.$ in the target group and $1.19{\mu}g/\ell,\;1.36{\mu}g/g$ creatinine and $1.17{\mu}g/S.G.$ in the control. For female $2.69{\mu}g/\ell,\;3.94{\mu}g/g$ creatinine and $2.63{\mu}g/S.G.$ in the target group and $1.27{\mu}g/\ell,\;1.97{\mu}g/g$ creatinine and $1.25{\mu}g/S.G.$ in the control, respectively. In addition, urinary Cd of the target group had affected by the period of residence and dietary habit for the rice and the vegetables from the target area. These findings suggest the chronic exposure to Cd of the target population. Mean excretion of urinary NAG, $\beta_2-MG$ and total protein were not significant between two groups. In the target group, urinary NAG activity and total protein were significantly correlated with urinary Cd, but $\beta_2-MG$ was not related. Urinary excretion of NAG, $\beta_2-MG$ and total protein were significantly increased in $10\leqq$ than in <2 of urinary Cd level. In $2\sim10$ group of urinary Cd level, the excretion of NAG significantly increased while not showed for $\beta_2-MG$. In present study, urinary excretion of NAG was relatively sensitive than $\beta_2-MG$ in chronic exposure population to low level Cd.

  • PDF