Mechanisms of Immobilization and Leaching Characteristics of Arsenic in the Waste Rocks and Tailings of the Abandoned Mine Areas

폐광산 지역 폐광석 및 광미에서 비소의 고정 메커니즘과 용출특성

  • Kang Min-Mu (Department of Geological and Environmental Hazards, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee Pyeong-Koo (Department of Geological and Environmental Hazards, Korea Institute of Geoscience and Mineral Resources)
  • 강민주 (한국지질자원연구원 지질환경재해연구부) ;
  • 이평구 (한국지질자원연구원 지질환경재해연구부)
  • Published : 2005.12.01

Abstract

EPMA determined that Fe(Mn)-(oxy)hydroxides and well-crystallized Fe-(oxy)hydroxides and could contain a small amount of As $(0.3-11.0\;wt.\%\;and\;2.1-7.4\;wt.\%\;respectively)$. Amorphous crystalline Fe-(oxy) hydroxide assemblages were identified as the richest in As with $28-36\;wt.\%$. On the ternary $As_2O_5-SO_3-Fe_2O_3$ diagram, these materials were interpreted here as 'scorodite-like'. Dissolved As was attenuated by the adsorption on Fe-(oxy) hydroxides and Fe(Mn)-(oxy) hydroxides and/or the formation of an amorphous Fe-As phase (maybe scorodite: $FeAsO_4\cdot2H_2O$). Leaching tests were performed in order to find out leaching characteristics of As and Fe under acidic conditions. At the initial pHs 3 and 5, As contents dissolved from tailings of the cheongyang mine significantly increased after 7 days due to the oxidation of As-bearing secondary minerals (up to ca. $2.4\%$ of total), while As of Seobo mine-tailing samples was rarely released (ca. $0.0-0.1\%$ of total). Dissolution experiments at an initial pH 1 liberated a higher amount of As (ca. $1.1-4.2\%$ of total for Seobo tailings, $1.5-14.4\%$ of total for Cheongyang tailings). In addition, good correlation between As and Fe in leached solutions with tailings was observed. The kinetic problems could be the important factor which leads to increasing concentrations of As in the runoff water. Release of As from Cheongyang tailings can potentially pose adverse impact to surface and groundwater qualities in the surrounding environment, while precipitation of secondary minerals and the adsorption of As are efficient mechanisms for decreasing the mobilities of As in the surface environment of Seobo mine area.

EPMA분석결과, 철망간-(산)수산화광물과 결정질 철-(산)수산화광물에서 각각 $0.3-11.0wt.\%$$2.1-7.4wt.\%$인 적은 양의 As가 검출되었다. 비정질 철-(산)수산화광물에는 $28-36wt.\%$ 범위의 다량의 As가 인지되었고 $As_2O_5-SO_3-Fe_2O_3$ 다이어그램에 도식한 결과 스코로다이트에 근접하였다. 용해된 As는 철망간-(산)수산화광물과 철-(산)수산화광물에 흡착되고 스코로다이트와 같은 2차광물로 침전되어 저감되고 있었다. 용출실험은 산성환경에서 As와 Fe의 용출특성을 알아보고자 실시하였다. 반응용액의 pH 3과 5에서 용출된 As의 함량은 청양광산의 광미의 경우, 7일 이후에 뚜렷이 증가하였으며(전체 함량의 최대 $2.4\%$), 이는 As를 함유한 2차 광물들의 용해에 인한 것으로 판단된다. 반면에 서보광산의 광미에 함유된 As는 거의 용출되지 않았다(전체 As함량의 $0.0-0.1\%$). pH 1의 용출실험결과, 서보광산과 청양광산의 광미는 각각 $1.1-4.2\%$$1.5-14.4\%$의 As가 용출되었으며 As와 Fe는 밀접한 상관관졔가 있는 것이 관찰되었다. 용출실험에서 kinetics 문제는 우기에 As 농도를 증가시킬 수 있는 중요한 요인이 된다. 청양광산의 광미에 함유된 As는 지표수와 지하수의 수질에 악영향을 미칠 수 있다. 반면에 서보광산의 광미의 경우, As의 이동은 2차 광물의 침전과 흡착을 통해서 제어되는 것으로 나타났다.

Keywords

References

  1. 강민주 (2003) 청양 . 서보 중석광산 주변 토양의 중금속오염에 관한 광물학적 . 환경지구화학적 연구 : 자연정화와 환경관리 측면에서의 고찰. 충북대학교 석사학위논문, 178p
  2. 강민주, 이평구 (2005) 광미-물 상호반응에서 반응시간이 미량원소 용출에 미치는 영향. 지하수토양환경, 심사 중
  3. 강민주, 이평구, 최상훈, 신성천 (2003) 서보광산 폐광석내 2차 광물에 의한 중금속 고정화. 자원환경지질, 36권, p. 177-189
  4. 환경부, 2004. 대기환경연보 (2003)
  5. Amran, M.B., Hagege, A., Lagarde, F., Leroy, M.J.F., Lamotte, A., Demesmay, D., Olle, M., Albert, M., Rauret, G. and Lopez-Sanchez, J.F. (1995) Arsenic speciation in environmental matrices. In: Quevauvil-ler, R, Maier, E.A., Grieink, B., editors. Quality assurance for environmental analysis. Amsterdam: Elsevier, p. 285-304
  6. Buckly, A.N. and Walker, W. (1988) The surface composition of arsenopyrite exposed to oxidizing environments. Appl. Surf. Sci., v. 35, p. 227-240 https://doi.org/10.1016/0169-4332(88)90052-9
  7. Carbonell-Barrachina, A.A., Rocamora, A., Garcia-Gomis, C, Martinez-Sanchez, F. and Burlo, F. (2004) Arsenic and zinc biogeochemistry in pyrite mine waste from the Aznalcollar enbironmental disaster. Geoderma, v. 122, p. 195-203 https://doi.org/10.1016/j.geoderma.2004.01.008
  8. Chung, Y.S., Kim, T.K. and Kim, K.H. (1996) Temporal variation and cause of acidic precipitation from a monitoring network in Korea. Atmos. Environ., v. 30, p. 2429-2435 https://doi.org/10.1016/1352-2310(95)00186-7
  9. Corwin, D.L., David, A. and Goldberg, S. (1999) Mobility of arsenic in soil from Rocky Mountain Arsenal area. J. Contam. Hydrol., v. 39, p. 35-58 https://doi.org/10.1016/S0169-7722(99)00035-2
  10. Courtin-Nomade, A., Bril, H., Neel, C. and Lenain, J.F. (2003) Arsenic in iron cements developed within tailings of a former metalliferous mine-Enguiales, Aveyron. France. Appl. Geochem., v. 18, p. 395-408 https://doi.org/10.1016/S0883-2927(02)00098-7
  11. Dove, P.M. and Rimstidt, J.D. (1985) The solubility and stability of scorodite, $FeAsO_4$.$2H_2O$. Am. Mineral, v. 70, p. 838-844
  12. Frau, F. (2000) The formation-dissolution-precipitation cycle of melanterite at the abandoned pyrite mine of Genna Luas in Sardinia, Italy: environmental implications. Mineral Mag., v. 64, p. 995-1006 https://doi.org/10.1180/002646100550001
  13. Fukushi, K., Sasaki, M., Sato, T, Yanase, N., Amano, H. and Ikeda, H. (2003) A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Appl. Geochem., v. 18, p. 1267-1278 https://doi.org/10.1016/S0883-2927(03)00011-8
  14. Juillot, F., Ildefonse, Ph., Morin, G., Calas, G., de Kers-abiec, A.M. and Benedetti, M. (1999) Remobilization of arsenic from buried wastes at an industrial site: mineralogical and geochemical control. Appl. Geochem., v. 14, p. 1031-1048 https://doi.org/10.1016/S0883-2927(99)00009-8
  15. Krause, E. and Ettel, VA. (1988) Solubility and stability of scorodite, $FeAsO_4$.$2H_2O$ new data and further discussion. Am. Mineral, v. 73, p. 850-854
  16. Lee, B.K., Hong, S.H. and Lee, D.S. (2000) Chemical composition of precipitation and wet deposition of major ions on the Korean peninsular. Atmos. Environ., v. 34, p. 563-575 https://doi.org/10.1016/S1352-2310(99)00225-3
  17. Lee, P.K., Kang, M.J., Choi, S.H. and Touray, J.C. (2005) Sulfide oxidation and die natural attenuation of arsenic and trace metals in the waste rocks of the abandoned Seobo tungsten mine, Korea. Appl. Geochem., v. 20 p. 1687-1703 https://doi.org/10.1016/j.apgeochem.2005.04.017
  18. Nesbitt, H.W. and Muir, I.J. (1998) Oxidation states and speciation of secondary products on pyrite and arsenopyrite reacted with mine waters and air. Mineral Petrol., v. 62, p. 123-144 https://doi.org/10.1007/BF01173766
  19. Nesbitt, H.W., Muir, I.J. and Pratt, A.R. (1995) Oxidation of arsenopyrite by air, air-saturated, distilled water, implications for mechanism of oxidation. Geochim. Cosmochim. Acta, v. 59, p. 1773-1786 https://doi.org/10.1016/0016-7037(95)00081-A
  20. Nordstrom, D.K. and Parks, G.A. (1987) Solubility and stability of scorodite$(FeAsO_4.2H_2O)$. Dis. Am. Mineral, v. 72, p. 849-851
  21. Richardson, S. and Vaughan, D.J. (1989) Arsenopyrite: a spectroscopic investigation of altered surfaces. Mineral Mag., v. 53, p. 223-229 https://doi.org/10.1180/minmag.1989.053.370.09
  22. Roussel, C, Neel, C. and Bril, H. (2000) Minerals controlling arsenic and lead solubility in an abandoned gold mine tailings. Sci. Tot. Environ., v. 263, p. 209-219 https://doi.org/10.1016/S0048-9697(00)00707-5
  23. Stromberg, B. and Banwart, S., (1999) Weathering kinetics ofwaste rock from the Aitik copper mine, Sweden: scale dependent rate factors and pH controls in large column experiments. J. Contam. Hydrol., v. 39, p. 59-89 https://doi.org/10.1016/S0169-7722(99)00031-5
  24. Sun, X. and Doner, H. (1998) Adsorption and oxidation of arsenite on goethite. Soil Sci., v. 163, p. 278-287 https://doi.org/10.1097/00010694-199804000-00003
  25. Vink, B.W. (1996) Stability of antimony and arsenic compounds in the light of revised and extended Eh-pH diagrams. Chem. Geol., v. 130, p. 21-30 https://doi.org/10.1016/0009-2541(95)00183-2
  26. Webster, J.G., Nordstrom, D.K. and Smith, K.S. (1994) Transport and natural attenuation of Cu, Zn, As and Fe in the acid mine drainage of Leviathan and Bryant Creeks. In: Alpers CN, Blowes DW(Eds), Environmental geochemistry of sulfide oxidation. Am. Chem. Soc. Symp. Series 550, p. 244-260