• Title/Summary/Keyword: Abandoned

Search Result 1,018, Processing Time 0.04 seconds

A Survey of Old-field Herbs for Susceptibility to Phenolic Compounds (페놀화합물에 대한 묵밭 초본식물의 감수성)

  • Stowe, L. Gordon;Kil, Bong-Seop;Yim, Yang-Jai
    • Journal of Plant Biology
    • /
    • v.30 no.1
    • /
    • pp.11-20
    • /
    • 1987
  • Phenolic compounds, p-coumaric and p-hydroxybenzoic acids, known as inhibitors for development and growth of many pioneer species on early stage of succession were used for the test fo susceptibility in various herbs collected from abandoned agricultural fields in the vicinity of Amherst(U. S. A.). The percent inhibition was generally greater for p-coumaric acid than for p-hydroxybenzoic acid. Concentrations of 5$\times$10-5 and 5$\times$10-4M generally had no significant effects, but at 5$\times$10-3M was inhibitory to germination and growth of tested species. And the percent inhibition caused by the two phenolics was correlated (r=.843, p<.01). Also the indices of resistance for germination and elongation were significant (r=.695, p<.01) in this study. While Cirsium and Lepidium invading species of early stage of succession were sharply susceptible for toxic activity by phenolic acids.

  • PDF

Animal Appearance Recognition using Deep Learning Image Analysis (딥러닝 이미지 분석을 활용한 동물 외형 인식)

  • Park, Jae-Cheol;Hwang, Jeong-Tae;Song, Da-won;Kim, Dong-Jun;Lee, Jun-Pyo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.197-198
    • /
    • 2021
  • 반려동물에 대한 인식변화와 고령화, 저출산 문제로 반려동물을 키우는 사람이 계속해서 증가하고 있다. 하지만 반려동물을 유기하는 경우도 많아져 정부에서는 반려동물 등록제를 시행하여 동물 유기를 예방하고 있다. 그럼에도 불구하고 동물 등록 절차의 번거로움과 부작용 우려로 인해 많은 사람이 등록을 하고 있지 않는 실태이다. 본 논문에서는 딥러닝 이미지 분석을 활용한 동물 외형분석 기술을 제안한다. 제안하는 기술은 동물 이미지에서 특징점 추출을 위해 CNN과 구글에서 제공하는 딥러닝 프레임워크인 텐서플로우(TensorFlow)를 활용하며 동물의 외형을 분석해 동물의 고유한 외형 정보를 얻을 수 있다. 이를 통해 각 개체를 특정할 수 있어 현재 시행되고 있는 동물 등록방법을 대체하여 동물 유기문제 해결에 기여할 것으로 기대한다.

  • PDF

Automatic Parking Enforcement of Electric Kickboards Based on Deep Learning Technique (딥러닝 기반의 전동킥보드 자동 주차 단속)

  • Park, Jisu;So, Sun Sup;Eun, Seongbae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.326-328
    • /
    • 2021
  • The use of shared electric kickboards that can move quickly within a short distance at a relatively low price is increasing significantly. In this paper, we propose a system for recognizing incorrect parking of an abandoned shared kickboard by applying deep learning-based object recognition technology. In this paper, a model similar to CNN was created separately considering the characteristics of the experimental data, and it was shown that a recognition rate of 60% was obtained through the experiment.

  • PDF

The Mother Goddess of Champa: Po Inâ Nâgar

  • Noseworthy, William B
    • SUVANNABHUMI
    • /
    • v.7 no.1
    • /
    • pp.107-137
    • /
    • 2015
  • This article utilizes interdisciplinary methods in order to critically review the existing research on the Mother Goddess of Champa: Po Inâ Nâgar. In the past, Po Inâ Nâgar has too often been portrayed as simply a "local adaptation of Uma, the wife of Śiva, who was abandoned by the Cham adapted by the Vietnamese in conjunction with their conquest of Champa." This reading of the Po Ina Nagar narrative can be derived from even the best scholarly works on the subject of the goddess, as well as a grand majority of the works produced during the period of French colonial scholarship. In this article, I argue that the adaption of the literary studies strategies of "close reading", "surface reading as materiality", and the "hermeneutics of suspicion", applied to Cham manuscripts and epigraphic evidence-in addition to mixed anthropological and historical methods-demonstrates that Po Inâ Nâgar is, rather, a Champa (or 'Cham') mother goddess, who has become known by many names, even as the Cham continue to re-assert that she is an indigenous Cham goddess in the context of a majority culture of Thành Mẫu worship.

  • PDF

Data Visualization of Site-Specific Underground Sounds

  • Tae-Eun, Kim
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.77-84
    • /
    • 2024
  • This study delves into the subtle sounds emanating from beneath the earth's surface to unveil hidden messages and the movements of life. It transforms these acoustic phenomena into digital data and reimagines them as visual elements. By employing Sismophone microphones and utilizing the FFT function in p5.js, it analyzes the intricate frequency components of subterranean sounds and translates them into various visual elements, including 3D geometric shapes, flowing lines, and moving particles. This project is grounded in the sounds recorded in diverse 'spaces of death,' ranging from the tombs of Joseon Dynasty officials to abandoned areas in modern cities. We leverage the power of sound to transcend space and time, conveying the concealed narratives and messages of forgotten places .Through the visualization of these sounds, this research blurs the boundaries between 'death' and 'life,' 'past' and 'present,' aiming to explore new forms of artistic expression and broaden perceptions through the sensory connection between sound and vision.

Assessment of Water Pollution by Discharge of Abandoned Mines (휴폐광산 지역에서 유출되는 하천수의 오염도 평가)

  • Kim Hee-Joung;Yang Jay-E.;Ok Yong-Sik;Lee Jai-Young;Park Byung-Kil;Kong Sung-Ho;Jun Sang-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.25-36
    • /
    • 2005
  • Several metalliferous and coal mines, including Myungjin, Seojin and Okdong located at the upper watershed of Okdong stream, were abandoned or closed since 1988 due to the mining industry promotion policy. Thus these disposed an enormous amount of mining wastes without a proper treatment facilities, resulting in water pollution in the downstream areas. Acid mine drainage (AMD) and waste water effluents from the closed coal mines were very strongly acidic showing pH ranges of 2.7 to 4.5 and had a high level of Total Dissolved Solids (TDS) showing the ranges of 1,030 to 1,947 mg/L. Also heavy metal concentrations in these samples such as Fe, Cu, Cd and anion such as sulfate were very high. Concentrations of water soluble heavy metals in the Okdong streams were in the orders of Fe>Al>Mn>Zn>Cu>Pb>Cd, indicating Fe from the AMD and waste water effluents contributed greatly to the quality of water and soil in the lower watershed of Okdong stream. Copper concentrations in the effluents from the tile drainage of mine tailings dams were highest during the raining season. Water Pollution Index (WPI) of the surface water at the upper stream of Okdong river where AMD of the abandoned coal mines was flowed into main stream were in the ranges of 16.3 to 47.1. On the other hand, those at the mid stream where effluents from tailings dams and coal mines flowed into main stream were in the WPI ranges of 10.6 to 19.5. However, those at the lower stream were ranged from 10.6 to 14.9. These results indicated that mining wastes such as AMD and effluents from the closed mines were the major source to water pollution at the Okdong stream areas.

Heavy Metal Contamination around the Abandoned Au-Ag and Base Metal Mine Sites in Korea (국내 전형적 금은 및 비(base)금속 폐광산지역의 중금속 오염특성)

  • Chon Hyo-Taek;Ahn Joo Sung;Jung Myung Chae
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.101-111
    • /
    • 2005
  • The objectives of this study we to assess the extent and degree of environmental contamination and to draw general conclusions on the fate of toxic elements derived from mining activities in Korea. 인t abandoned mines with four base-metal mines and four Au-Ag mines were selected and the results of environmental surveys in those areas were discussed. In the base-metal mining areas, the Sambo Pb-Zn-barite, the Shinyemi Pb-Zn-Fe, the Geodo Cu-Fe and the Shiheung Cu-Pb-Zn mine, significant levels of Cd, Cu, Pb and Zn were found in mine dump soils developed over mine waste materials, tailings and slag. Furthermore, agricultural soils, stream sediments and stream water near the mines were severely contaminated by the metals mainly due to the continuing dispersion downstream and downslope from the sites, which was controlled by the feature of geography, prevailing wind directions and the distance from the mine. In e Au-Ag mining areas, the Kubong, the Samkwang, the Keumwang and the Kilkok mines, elevated levels of As, Cd, Cu, Pb and Zn were found in tailings and mine dump soils. These levels may have caused increased concentrations of those elements in stream sediments and waters due to direct dis-charge downstream from tailings and mine dumps. In the Au-Ag mines, As would be the most characteristic contaminant in the nearby environment. Arsenic and heavy metals were found to be mainly associated with sulfide gangue minerals, and mobility of these metals would be enhanced by the effect of oxidation. According to sequential extraction of metals in soils, most heavy metals were identified as non-residual chemical forms, and those are very susceptible to the change of ambient conditions of a nearby environment. As application of pollution index (PI), giving data on multi-element contamination in soils, over 1.0 value of the PI was found in soils sampled at and around the mining areas.

Distribution and remediation design of heavy metal contamination in farm-land soils and river deposits in the vicinity of the Goro abandoned mine (고로폐광산 주변 농경지 토양 및 하천 퇴적토의 중금속 오염 분포 및 복원 대책 설계)

  • 이민희;최정찬;김진원
    • Economic and Environmental Geology
    • /
    • v.36 no.2
    • /
    • pp.89-101
    • /
    • 2003
  • River deposits and farmland soils were analyzed to investigate the pollution level of heavy metals in the vicinity of the Goro abandoned Zn-mine. Surface (0-40 cm) and subsurface (40-100 cm) soils were collected around a main river located at the lower part of the Goro mine, and analyzed by ICP-MS for Cd, Cu, Pb, Zn and Cr after 0. 1N HCI extraction and by AAS for As after IN HCI extraction. Concentrations of cadmium and lead at the surface river deposits close to the mine were over the Soil Pollution Warning Limit (SPWL), and 43% of sample sites (6 of 14 samples) were over SPWL for As suggesting that river deposits were broadly contaminated by arsenic. Results from farmland soil analysis showed that surface soils were contaminated by heavy metals, while only arsenic was over SPWL at 50% of sampling sites. Main pollution mechanism around the Goro mine was the discharge of mine tailing and waste rocks from the storage site to the river and to adjacent farmland during flood season. Pollution Grades for sample locations were prescribed by the Law of Soil Environmental Preservation, suggesting that the pollution level of heavy metals around the Goro mine was serious, and the remediation operation fur arsenic and the isolation of mine tailing and waste rocks from river and farmland should be activated to protect further contamination. The area needed to clean up was estimated from pollution distribution data and the remediation methods such as a soil washing method and a soil improvement method were considered as the further remediation operation for arsenic contaminated soils and river deposits around the Goro abandoned mine.

Physio-Chemical Characteristics of Soil, Stream Sediment and Soil Water Contaminated by the Abandoned Coal Mine in Keumsan, Chungnam (충남(忠南) 금산(錦山) 폐탄광지역(廢炭鑛地域)의 토양(土壤), 하상퇴적물(河床堆積物) 및 토양수(土壤水)의 이화학적(理化學的) 특성(特性))

  • Min, Ell Sik;Kim, Myung Hee;Song, Suckhwan
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.3
    • /
    • pp.324-333
    • /
    • 1997
  • The research has been made for the effects of the pollution by the abandoned coal mine drainage on the physical and chemical properties of soil, stream sediment and soil water. The soils overspreaded by the abandoned coal don't develop solum and the bulk density is $1.83g/m^3$, compared with $1.14-1.38g/m^3$ in the other forest soils. The soil pH range in coal bearing region ie, from 4.01 to 4.11 and non-coal bearing soil range is from 5.03 to 5.13. Heavy metals such as As, Cr, Ni, Mo and Ba of coal bearing soils and polluted stream sediments have larger concentration than those of non-coal content and non-polluted. Especially As and Mo concentrations are largely high in coal bearing. The relative ratios $K_2O/Na_2O$ of geochemical elements are higher in coal bearing soil and polluted stream sediments than those of non-coal bearing soils and non-polluted stream sediments as well as black shales of the Changri Formation. However, $MgO+Fe_2O_3+TiO_2/CaO+K_2O$ are the opposite trends, so that the ratios are lower in the polluted regions. The soil water pHs in the polluted regions are the strong acid(pH3.4-4.2) and buffer capacity of the polluted soil is low because canons such as $Na^+$, $K^+$, $Mg^{+2}$are leached by the acidification.

  • PDF

Characteristics of Stream and Soil Contamination from the Tailing Disposal and Waste Rocks at the Abandoned Uljin Mine (울진 폐광산의 매립광미와 폐광석에 의한 주변 토양 및 수계의 오염특성)

  • Lee, In-Gyeong;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.63-79
    • /
    • 2008
  • Physicochemical characteristics of stream water, leachate, mine water and groundwater were investigated to estimate the influences of the tailing and waste rock from the abandoned Uljin mine area. Total extraction analysis and mineralogical studies were carried out to understand sulfide weathering and to determine the distributions of trace elements in the soil affected by mine waste (tailing, waste rock and leachate). The pH and EC value of the leachate from the tailing disposal ranged 2.9-6.0, $99{\sim}3,990{\mu}S/cm$, respectively, and the concentrations of dissolved major (up to 492 mg/l Ca; 83.8 mg/l Mg; 45.2 mg/l Na; 44.7 mg/l K, 50.8 mg/l Si) and trace elements (up to $826,060{\mu}g/l$ Fe; $131,230{\mu}g/l$ Mn; $333,600{\mu}g/l$ Al; $61,340{\mu}g/l$ Zn; $2,530{\mu}g/l$ Cu; $573{\mu}g/l$ Cd; $476{\mu}g/l$ Pb) were relatively high. The stream water showed the variation of dissolved metal concentrations in seasonally and spatially. The dissolved metal contents of the stream water increased by influx the leachate from the tailing disposal, but these of the down stream have been considerably decreased by mixing of dilute tributaries. The dissolved metal concentrations of the stream water at dry season (as February) were lower than these at rainy season (as May and July). These represent that the amounts of the leachate varied with season. However, stream water could not be effectively diluted by confluence with uncontaminated tributaries, because the flux of tributaries and streams reduced at dry season. Thus attenuations by dilution had been dominantly happened in rainy seasons. The order of accumulations of trace element in soils compared with background values revealed Mn>Fe>Pb>Cu>Zn. Sulfide minerals were mainly pyrrhotite, sphalerite and galena and chalcopyrite. Pyrrhotite was rapidly weathered along the edge and fractures, and results in the formation of Fe-(oxy)hydroxides, which absorbed a little amount of Zn.