• Title/Summary/Keyword: Abalone Haliotis discus

Search Result 222, Processing Time 0.032 seconds

Effects of dietary supplementation with citrus pomace and Ecklonia cava residue on the physiological changes and growth of disk abalone, Haliotis discus discus (감귤박 및 감태추출물의 사료첨가제 급여에 따른 둥근전복 (Haliotis discus discus)의 성장 및 생리적 변화)

  • Jwa, Min-Seok;Yeo, In-Kyu
    • Journal of fish pathology
    • /
    • v.28 no.1
    • /
    • pp.53-62
    • /
    • 2015
  • Here, we report the physiological changes and growth in disk abalone, Haliotis discus discus, in relation to dietary supplementation with citrus pomace (CP) 6%, Ecklonia cava residue (ECR) 6%, and CP + ECR (3% + 3%). The composition and nutrient content, survival rate and growth rate were measured 0, 4, 8 and 12 weeks after feeding the supplemented diets of CP and/or ECR. Moreover, the experiment of low salinity stress (25psu) for environmental resistance was examined for a period of 48 hours after feeding the supplemented diets for 12 weeks. The activities of superoxide dismutase (SOD), catalase (CAT), lysozymes, respiratory burst, and phenoloxidase were measured. The moisture content and crude protein condition of the body were increased with the addition of ECR only (P<0.05). We observed higher levels of survival in the experimental group compared with the control group. Moreover, the growth disk abalone that were fed a diet containing ECR was higher compared with the control group. However, the growth of abalone fed a diet containing CP was similar to the control group. With a rearing condition of low salinity stress, survival rate and lysozyme activity were increased in the ECR group compared with the control group. Dietary ECR reduced the level of CAT activity to approximately 30% of the control, however the level of CAT activity in the ECR group was similar to the start level of the previous stress. These results suggest that dietary ECR gives rise to an enhanced immunity in disk abalone, as a result of the decrease in CAT and lysozyme activity in particular. Accordingly, the growth and survival rate were increased by feeding an ECR-supplemented diet in the rearing of disk abalone, Haliotis discus discus.

Feces Production Rate of Abalone (Haliotis discus hannai) fed Undavia pinnatifida (미역 (Undaria pinnatifida)을 섭취 한 참전복(Haliotis discus hannai)의 분 배출률)

  • Park, Jeong-Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.6
    • /
    • pp.353-358
    • /
    • 2005
  • The present study investigated the feces production rate and fecal nitrogen production ratio of abalone, Haliotis discus hannai fed seaweed, Undaria pinnatifida. The abalone, with shell lengths of 3 cm, 5 cm, and 7 cm, were tested at temperatures of $12^{\circ}C$, $16^{\circ}C$, and $20^{\circ}C$ in a semi-recirculating aquaculture system. Under the given experimental conditions, the weight specific feces production rate (FPw) of the abalone increased with the decrease of shell length and the increase of temperature. The relationship of the FPw was. $FPw=-3.092+206.573/T - 1916.8/T^2+0.141L -0.037L^2(r^2=0.9412)$. In addition the abalone produced 17.8-22.5% of fecal material against ingested seaweed, Undaria pinnatifida, and $18.4-22.4\%$ of nitrogen ingested total nitrogen.

Bioaccumulation and growth change in the abalone Haliotis discus hannai exposed to copper (구리(Cu) 노출에 따른 전복, Haliotis discus hannai의 생체축적 및 성장의 변화)

  • Park, Hee-Ju;Kang, Ju-Chan
    • Journal of fish pathology
    • /
    • v.25 no.2
    • /
    • pp.103-109
    • /
    • 2012
  • The objective of this study was to investigate the effects of exposured $Cu^{2+}$ on growth and bioaccumulation of abalone Haliotis discus hannai. Abalone were exposed to various concentration of $Cu^{2+}$ (0, 5, 10, 20, $40{\mu}g/L$). Bioaccumulation of tissues, hepatopancreas, muscles and gills were measured. hepatopancreas and gills $Cu^{2+}$ concentration of abalone increases to extent during the 4 weeks accumulation time. But muscles showed no significant changes, with respect to control. These data indicate that abalone Haliotis discus hannai hepatopancreas and gills can be considered adequate target tissues for waterborne exposured of $Cu^{2+}$. Weight growth rate of abalone exposed to $Cu^{2+}$ was significantly decreased in 20 and $40{\mu}g/L$ groups compared to control. This study revealed that high $Cu^{2+}$ concentration (${\geq}20{\mu}g/{\ell}$) reduced growth of abalone. These data indicate that excessive waterborne $Cu^{2+}$ can affect the toxicity of xenbiotics to abalone through alterations in growth rate. Thus, environmental standard of $Cu^{2+}$ $20{\mu}g/L$, should be considered a potential source of variation in toxicological studies with abalone.

Dietary Inclusion of Distillers Dried Grain for Growth of Juvenile Abalone Haliotis discus hannai

  • Rahman, Md Mostafizur;Park, Sung-Oh;Choi, Jin;Lee, Sang-Min
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.2
    • /
    • pp.159-164
    • /
    • 2015
  • A feeding experiment was conducted to determine the effect of dietary distillers dried grain (DDG) on the growth and body composition of juvenile abalone, Haliotis discus hannai. Three diets were formulated to contain 0% (DDG0), 30% DDG (DDG1) replacing wheat flour and 30% DDG (DDG2) replacing fish meal and wheat flour. A commercial feed (CF) was also compared with experimental diets. Three replicate groups of abalone averaging $0.6{\pm}0.01g$ were fed one of the four diets for 14 weeks. The highest survival rate was observed in the abalone fed the DDG2 diet, which was higher than that of abalone fed the DDG0 diet. Weight gain, shell length, shell width and soft body weight of the abalone were not affected by dietary DDG and CF diet (P > 0.05). Proximate and amino acid composition of the soft whole body were not affected by dietary DDG and CF diet (P > 0.05). The result of this experiment suggests that DDG is a good ingredient to replace fish meal and wheat flour in the diet and could be used up to 30% in the diet without negative effects on the growth performance of juvenile abalone Haliotis discus hannai.

Cytogenetic Analysis of the Triploid Pacific Abalone, Haliotis discus hannai (북방전복, Haliotis discus hannai 3배체의 세포유전학적 연구)

  • Jee, Young-Ju;Chang, Young-Jin
    • The Korean Journal of Malacology
    • /
    • v.28 no.1
    • /
    • pp.37-43
    • /
    • 2012
  • In this study, we invesgated a cytogenetic analysis of the Pacific triploid abalone, Haliotis discus hannai induced by low temperature treatment. We got a lot of mitotic metaphase chromosome spreads from the triploid and diploid Pacific abalones' hatched larvae (trochophores). The chromosome number of diploid abalone was 2n = 36 and that of triploid abalone was 3n = 54, so the chromosome number of triploid abalone was 1.5 times higher than that of diploid abalone. We developed a modified flow cytometric method for Pacific abalone from the existing methods. We uesd 51 months aged triploid and diploid Pacific abalones' hemolymph to get the DNA contents by flow cytometry. The DNA content of diploid abalone was 1.743 pg/cell and the DNA content of triploid abalone was 1.49 times higher than that of diploid one. It proved that triploid abalone was consisted with two sets of maternal diploid and one set of paternal genome.

Cloning, characterization, and expression of the macrophage migration inhibitory factor gene from the pacific abalone (Haliotis discus hannai) (북방전복 (Haliotis discus hannai) 의 대식세포이동저해인자 (MIF, Macrophage migration inhibitory factor) 유전자 동정 및 발현분석)

  • Park, Eun Hee;Shin, Eun-Ha;Kim, Young-Ok;Kim, Dong-Gyun;Kong, HeeJeong;Kim, Woo-Jin;An, Chul Min;Nam, Bo-Hye
    • The Korean Journal of Malacology
    • /
    • v.32 no.4
    • /
    • pp.241-247
    • /
    • 2016
  • Macrophage Migration Inhibitory Factor (MIF) are well-defined role as unique cytokine and critical mediator in acute and chronic inflammatory diseases, autoimmune diseases. In this study, we isolated and characterized a full-length of MIF cDNA from the abalone (Haliotis discus hannai). The full-length cDNA of abMIF was of 1264 bp, consisting of a 5'-terminal UTR of 143 bp, an open reading frame of 360 bp and a 3-terminal UTR of 761 bp. The abalone MIF cDNA encodes a 119-amino acid polypeptide with a calculated molecular mass of 13.4 kDa and isoelectric point of 9.07. Multiple alignments and phylogenetic analysis with the deduced abalone MIF protein and showed strong homology with disk abalone (Haliotis discusdiscus). The deduced amino acid sequence of abMIF exhibited homology with other reported MIFs, such as 80%, with that of other disk abalone H. discus discus MIF gene. Quantitative real-time PCR (qRT-PCR) analysis indicated that abMIF was highly expression observed in hapatopacreas, intestine, foot, and gonad of normal conditioned abalone. Even though AbMIF mRNA level in hemocytes was low under the normal condition, it was sharply up-regulated and reached the maximum at 6 h post-infection with Vibrio parahaemolyticus, and then decreased at 24 h post-infection. This result indicates that abMIF plays an important role in responding in the innate immune system.

Effect of Dietary Pigment Sources on the Growth and Shell Color of Abalone (Haliotis discus hannai) (배합사료에 색소원료 첨가가 참전복 치패의 성장 및 패각 색깔에 미치는 영향)

  • LIM Tae-Jun;LEE Sang-Min
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.6
    • /
    • pp.601-605
    • /
    • 2003
  • This study investigated the effect of dietary pigment sources on growth and shell color of juvenile abalone(Haliotis discus hannai). Three replicate groups of the abalone (average weight 173 mg) were fed diets containing various pigment sources such as Porphyra powder, Spirulina, yeast astaxanthin, and paprika extract for 16 weeks. Survival and weight gain were not affected by dietary pigment sources (P>0.05). Shell color of abalone fed diets containing Porphyra powder and Spirulina approached the yellow-red and orange, colors similar to wild abalone. However, shell color of abalone fed the diets containing yeast astaxanthin and paprika extract were similar to the bright green control group. These results should be useful for changing the shell color of abalone in aquaculture.

Comparison of Biomarkers of Haliotis discus hannai and Hybrid Abalone (H. madaka♀*H. discus discus♂) in Marine Net Cage (해상가두리에서 북방전복 Haliotis discus hannai와 둥근전복속 교잡종(왕전복 H. madaka♀*둥근전복 H. discus discus♂)의 생물지표 비교)

  • Hyeon Jin, Kim;So Ryung, Shin;Seong Jin, Kim;Jung Jun, Park;Jung Sick, Lee
    • Journal of Marine Life Science
    • /
    • v.7 no.2
    • /
    • pp.163-170
    • /
    • 2022
  • In this study, the results of hybridization were evaluated by analyzing the biomarkers of Haliotis discus hannai and hybrid abalone (H. madaka♀*H. discus discus♂) in marine net cage. The survival rate was similar both experimental groups, but the growth (shell length) was about 10% faster in hybrid abalone. The deformity of respiratory pore in the hybrid abalone was about 6% lower than H. discus hannai, and the shell depression was about 15% lower in the hybrid abalone. In the biochemical composition, crude protein was about 3.1% higher in hybrid abalone, and showed similar values except for the crude protein. In the histological structure of the hepatopancreas, which performs the functions of digestion, absorption and detoxification of abalone, good results were obtained in the hybrid abalone. On these results, it is judged that the hybrid abalone will have high aquaculture productivity in the aquaculture environment.

Molecular and Physiological Aspects of Breeding Program for Development of Hybrids between Abalones Distributed in the Coast of Korea (한국산 전복을 이용한 교잡종 개발)

  • Lee, Jong Kyu;Seo, Yong Bae;Kim, Gun-Do;Lim, Han Kyu
    • Journal of Life Science
    • /
    • v.26 no.10
    • /
    • pp.1218-1223
    • /
    • 2016
  • Abalones are gastropod mollusks belonging to the genus Haliotis. Fishery products are continuously declining worldwide while abalone production from aquatic farms has considerably increased. Although abalones are regarded as very important marine resources and considered to have big potential in sea-food farming industry around world, the slow growth rate of Pacific abalones is considered to be one of the most serious problems. For the genetic improvements in cultured abalone, advances in various breeding techniques for abalone have been reached through the introduction of selection, crossbreeding, hybridization, and polyploidy in several commercially important abalone species. Six species of abalone have been reported to be distributed along the coasts of Korea: Haliotis discus hannai, Haliotis discus discus, Haliotis madaka, Haliotis gigantea, Haliotis diversicolor diversicolor, and Haliotis diversicolor supertexta. The hybridization between these abalones may be one of the advanced technologies, and the preliminary experiments of interspecific hybrids between abalone species distributed in northern pacific areas including Korea, China, and Japan have been conducted. In this study, we reviewed the phylogenetic relationship of northern pacific abalone species which have the potential traits for aquaculture in Korea and their identifications. We also examined the development of molecular markers and some other aspects of the genetic approaches for successful development of hybrids.

Phylogenetic Study of Genus Haliotis in Korea by Cytochrome c Oxidase Subunit 1 and RAPD Analysis (Cytochrome c oxidase subunit 1과 RAPD 분석에 의한 한국 전복속의 계통 연구)

  • Seo, Yong Bae;Kang, Sung Chul;Choi, Seong Seok;Lee, Jong Kyu;Jeong, Tae Hyug;Lim, Han Kyu;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.406-413
    • /
    • 2016
  • Abalones are gastropod mollusks belonging to the genus Haliotis. Pacific abalones are regarded as a very important marine gastropod mollusk in Korea, Japan, China, and also in food industries around the world. In Korea, 6 species of abalone have been reported to occur along the coasts: Haliotis discus hannai, Haliotis discus discus, Haliotis madaka, Haliotis gigantea, Haliotis diversicolor supertexta, and Haliotis diversicolor diversicolor. This study was performed to discriminate the genetic variances by the partial sequences of the mitochondrial cytochrome c oxidase subunit I (COI) genes and random amplified polymorphic DNA (RAPD) analysis against four species of Pacific abalone (H. discus hannai, H. discus, H. madaka, H. gigantea). COI gene is reasonably well conserved and has been sequenced in various invertebrate taxa. The RAPD analysis technique is a relatively simple and low cost method that allows differentiation of taxa without the need to know their genomes. In this study, we investigated the genetic diversity, phylogenetic relationships within each species. The COI and RAPD analysis were able to distinguish between H. gigantea and the other three species. However, these analysis methods were inadequate to distinguish between H. discus and H. madaka. These results are believed to be able to provide a basis data for future hybrid breeding research by defining the genetically closely related four species of abalone, which is to develop new hybrid abalone for export using hybrid breeding.