• Title/Summary/Keyword: AaIT

Search Result 1,342, Processing Time 0.04 seconds

Magnetoresistance of ${[Co/Fe/Cu]}_20$ Multilayers (${[Co/Fe/Cu]}_20$ 다층박막의 자기저항 특성)

  • 이장로
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.6
    • /
    • pp.411-416
    • /
    • 1996
  • We have studied the effect of a spin-dependence interface electron scattering on the giant magnetoresistance by adding a Fe magnetic material to the Co/Cu interfaces. The $Fe(50\;{\AA})/[Co(17\;{\AA})/Fe(t\;{\AA})/Cu(24\;{\AA})]_{20}$ multilayers are deposited on the Corning glass 2948 and 7059 substrates in a dc magnetron sputtering system. The magnetoresistance ratio is 22 % in the only Co/Cu multilayer, while it is increased to 26 % with inserted ultra thin Fe interface layer and reduced with increasing thickness of the Fe interface layer. It was investigated to the dependence of the magnetoresistance behaviors on annealing temperature. The magnetic properties of the multilayers were measured by vibrating sample magnetometer. Also, the structures and the surface roughness of samples were characterized by X-ray diffraction and atomic force microscope, respectively. The magnetoresistance ratio was increased to annealing temperature $300^{\circ}C$, but reduced at the temperature higher than $300^{\circ}C$ due to the interfacial diffuse.

  • PDF

Annealing Characteristics of Ultrafine Grained AA1050/AA5052 Complex Aluminum Alloy Sheet Fabricated by Accumulative Roll-Bonding (반복겹침접합 압연공정에 의해 제조한 초미세립 AA1050/AA5052 복합알루미늄합금판재의 어닐링 특성)

  • Lee, Seong-Hee;Lee, Gwang-Jin
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.655-659
    • /
    • 2011
  • An ultrafine grained complex aluminum alloy was fabricated by an accumulative roll-bonding (ARB) process using dissimilar aluminum alloys of AA1050 and AA5052 and subsequently annealed. A two-layer stack ARB process was performed up to six cycles without lubricant at an ambient temperature. In the ARB process, the dissimilar aluminum alloys, AA1050 and AA5052, with the same dimensions were stacked on each other after surface treatment, rolled to the thickness reduction of 50%, and then cut in half length by a shearing machine. The same procedure was repeated up to six cycles. A sound complex aluminum alloy sheet was fabricated by the ARB process, and then subsequently annealed for 0.5h at various temperatures ranging from 100 to $350^{\circ}C$. The tensile strength decreased largely with an increasing annealing temperature, especially at temperatures of 150 to $250^{\circ}C$. However, above $250^{\circ}C$ it hardly decreased even when the annealing temperature was increased. On the other hand, the total elongation increased greatly above $250^{\circ}C$. The hardness exhibited inhomogeneous distribution in the thickness direction of the specimens annealed at relatively low temperatures, however it had a homogeneous distribution in specimens annealed at high temperatures.

Changes in the Ångstrom Exponent during Aerosol Coagulation and Condensation

  • Jung, Chang H.;Lee, Ji Yi;Kim, Yong P.
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.4
    • /
    • pp.304-313
    • /
    • 2012
  • In this study, the ${\AA}$ngstrom exponent for polydispersed aerosol during dynamic processes was investigated. Log-normal aerosol size distribution was assumed, and a sensitivity analysis of the ${\AA}$ngstrom exponent with regards the coagulation and condensation process was performed. The ${\AA}$ngstrom exponent is expected to decrease because of the particle growth due to coagulation and condensation. However, it is difficult to quantify the degree of change. In order to understand quantitatively the change in the ${\AA}$ngstrom exponent during coagulation and condensation, different real and imaginary parts of the refractive index were considered. The results show that the ${\AA}$ngstrom exponent is sensitive to changes in size distribution and refractive index. The total number concentration decreases and the geometric mean diameter of aerosols increase during coagulation. On the while, the geometric standard deviation approaches monodispersed size distribution during the condensation process, and this change in size distribution affects the ${\AA}$ngstrom exponent. The degree of change in the ${\AA}$ngstrom exponent depends on the refractive index and initial size distribution, and the size parameter changes with the ${\AA}$ngstrom exponent for a given refractive index or chemical composition; this indicates that the size distribution plays an important role in determining the ${\AA}$ngstrom exponent as well as the chemical composition. Subsequently, this study shows how the ${\AA}$ngstrom exponent changes quantitatively during the aerosol dynamics processes for a log-normal aerosol size distribution for different refractive indices; the results showed good agreement with the results for simple analytic size distribution solutions.

Studies on the Coordination of Acetamide to Rare Earth Metal Ion (Ln(II) (희토류 금속이온 (Ln(III))과 Acetamide 사이의 상호작용에 대한 연구)

  • Sang-Won Lee;Jeonga Yu;Chang-Ju Yoon;Yoo-Hyek Jun;Young-Sang Choi
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.205-211
    • /
    • 1992
  • The $2{\nu}_{C=0}$ + amide III combination band spectrum of acetamide (AA) was obtained in very dilute solutions of AA+lanthanide shift reagents (LSR) in carbon tetrachloride over the range of $15^{\circ}$ to $45^{\circ}C$. It was found that only 1 : 1 AA-LSR complex is formed by the interaction between carbonyl oxygen of AA and central metal ion(Ln(Ⅲ)) in LSR. The thermodynamic parameters for Ln(III)${\cdot}$O=C bond were determined by computer analysis of concentration and temperature dependent spectra. ${\Delta}H^{\circ}$ for the coordination of AA to Eu$(dpm)_3$, Yb$(dpm)_3$, and Pr$(dpm)_3$ have been found to be -39.1, -28.4, and -25.5 kJ/mol, respectively. It has shown that this type of ion-dipole interaction is more than twice stronger compared to the dipole-dipole interaction in the amide linkage, and largely depending on the steric hindrence effect by the bulky dpm groups around central metal ion (Ln(III)) rather than the ionic potential effect of central metal ion itself.

  • PDF

A Study on the Activities of Five Natural Plant Essential Oils on Atopic Dermatitis (자생식물 Essential Oil 5 종의 항 아토피피부염 활성 연구)

  • Jeong, Jeong-Hwa;Nguyen, Thao Kim Nu;Choi, Min-Jin;Nguyen, Ly Thi Huong;Shin, Heung-Mook;Lee, Byung-Wook;Yang, In-Jun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • This study is an experiment to evaluate the anti-atopy efficacy of five kinds of natural plant essential oils; Artemisia annua L. (AA), Citrus junos Sieb. ex TANAKA (CJ), Chrysanthemum boreale Makino (CB), Pinus koraiensis (PK), and Pinus densiflora for. erecta (PD). Through Agar diffusion test, five species of native plant essential oils were treated in a total of four strains, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans. In order to invest the anti-inflammatory effect, five kinds of natural plant essential oils were treated in HaCaT cells-induced by TNF-α and IFN-γ (TI). AA, CJ, CB, PK and PD showed antibacterial effects on Candida albicans at a concentration of 10 mg/mL. We also found that the thymus and activation-regulated chemokine (TARC) expression was suppressed in 0.1 ㎍/mL of PK, 1 ㎍/mL of AA, CB, and PK. macrophage-derived chemokine (MDC) expression was suppressed in 1 ㎍/mL of AA and PK. IL-6 expression was suppressed in 0.1, 1 ㎍/mL of AA, PK in HaCaT cells. Hence it suggests that AA, CB, and PK have the anti-inflammatory effects, and it could contribute to atopic dermatitis relief by reducing the infiltration of immune cells to inflamed area.

INFLUENCE OF AMINO ACID SUPPLEMENTS TO A STRAW-MAIZE-BASED UREA DIET ON DUODENAL DIGESTA FLOW AND DIGESTION IN SHEEP

  • Fujimaki, T.;Kobayashi, Y.;Wakita, M.;Hoshino, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.1
    • /
    • pp.137-145
    • /
    • 1994
  • Amino acid (AA) substituted diets had no influence on rumen levels of total volatile fatty acids (VFA), ammonia and ${\alpha}$-amino-N, but tended to increase molar proportions of isovalerate and counts of total viable AA utilizing and celluloytic bacteria in the rumen as compared with the control urea diet. The AA diets did not affect daily flow to the duodenum of dry matter (DM), organic mater (OM) and acid detergent fibre (ADF), and rumen digestibility of these nutrients. However, the AA diets, in particular the 10 essential AA (EAA) diet improved total digestibility of DM, OM and ADF by decreasing faecal output of these fractions. Although N flow to the duodenum and N retention were not affected with the dietary treatments, duodenal bacterial flow appeared to increase by the AA diets when it was estimated by means of 2,6-diaminopimelic acid (DAP) and nucleic acid-purine bases (PB) as markers. The results suggest that AA supplements to a urea diet could improve feed utilization by stimulating microbial activity and proliferation in the rumen but and increased microbial activity per se is not necessarily associated with improvement of feed conversion.

Galvanic Corrosion Between Component Parts of Aluminum Alloys for Heat Exchanger of Automobile

  • Y. R. Yoo;D. H. Kim;G. B. Kim;S. Y. Won;S. H. Choi;Y. S. Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.322-329
    • /
    • 2023
  • There are a variety of heat exchangers used in automobiles, such as shell and tube heat exchangers, double tube heat exchangers, and plate heat exchangers. Most of them are water-cooled to prevent engine overheating. There have been reports of corrosion damage to these heat exchangers due to continuous wetting caused by external temperature differences, road pollutants, and snow removal. In addition, galvanic corrosion, which occurs when two dissimilar materials come into contact, has been identified as a major cause. In this study, corrosion characteristics and galvanic corrosion behavior of Al alloy (AA3003, AA4045 and AA7072) used in automobile heat exchangers were analyzed. Effective clad materials for heat exchanger tubes and fins were also evaluated. It was found that AA7072 should be applied as the cladding material for fin AA3003 and that AA4045 was suitable as a cladding material for tube AA3003 because this clad materials application was the most effective clad design to delay the occurrence of pinhole in the tube. Main factors influencing galvanic corrosion dissolution were found to be galvanic corrosion potential difference and galvanic corrosion current density.

Effects of Cladding and Antifreeze Solution on Cavitation Corrosion of AA3003 Tube of Heat Exchanger for Automobile

  • Young Ran Yoo;Seung Heon Choi;Hyunhak Cho;Young Sik Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.203-214
    • /
    • 2024
  • A heat exchanger is a device designed to transfer heat between two or more fluids. In a vehicle's thermal management system, Al heat exchangers play a critical role in controlling and managing heat for efficient and safe operation of the engine and other components. The fluid used to prevent heat exchangers from overheating the engine is mostly tap water. Heat exchange performance can be maintained at sub-zero temperatures using a solution mixed with antifreeze. Although the fluid flowing through the heat exchanger can reduce the temperature inside the engine, it also has various problems such as cavitation corrosion. Cavitation corrosion characteristics in tap water and corrosion characteristics were evaluated in this study when antifreeze was added for test specimens where AA4045 was cladded on the inner surface of AA3003 tubes of a fin-type heat exchanger. The cavitation corrosion resistance of AA3003 was found to be superior to that of AA4045 regardless of the test solution due to higher corrosion resistance and hardness of AA3003 than those of AA4045. The cavitation corrosion rate of Al alloys increased with the addition of antifreeze.

Studies on Pore Characteristics of Several Adsorbents (담배용 흡착제들의 동공 특성에 관한 연구)

  • Rhim, Kwang-Soo;Chung, Yong-Soon;Lee, Young-Taek
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.16 no.2
    • /
    • pp.181-190
    • /
    • 1994
  • Various active carbons were made from plant sources of coconut shell, pine tree, oak tree and lignite coal. Pore characteristics of these adsorbents were investigated. 1, With increasing activation time, specific surface area and pore volume increased, but the development of micropores was limited at a certain level. The average pore diameter, by BET, of coconut active carbon was 15.5-21.8$\AA$ and that of lignite carbon was 15.6-31.3$\AA$. The pore diameters of silica-gel, sepiolite and zeolite was 30.9$\AA$, 58.6$\AA$ and 55.7$\AA$, respectively. 2. The Horvath - Kawazoe micropore diameter of coconut shell active carbon was under 10.5$\AA$ and that of the other active carbon was under 20.9$\AA$ but silica-gel 33$\AA$, sepiolite 103 $\AA$ and zeolite was unexpectedly large to be 175$\AA$. From the difference between BET micropore diameter and Howath - Kawazoe diameter, it could be said that silica - gel has comparatively uniform pore diameter but sepiolite and zeolite have very uneven diameter. 3. Total pore volume of coconut shell active carbon was 0.27-1.04 cm3/g but that of the other active carbon, 0.23-0.62 cm3/g, was much lower than that of coconut shell active carbon. Hydrophilic adsorbent silica - gel and sepiolite showed big difference in specific surface area, but pore volumes of these were 0.47 and 0.56 cm3/g showing similar value and micropore volumes of these were, respectively, 0.06 cm3/g and 0.04 cm3/g. Total pore volume of zeolite was 0.1 cm3/g and that of micropore was only 0.02 cm3/g.

  • PDF

Anti-inflammatory effect in macrophages according to the mixing ratio of acemannan and aloesin (Acemannan과 aloesin의 혼합 비율에 따른 대식세포에서의 항염증 효과)

  • Hyo-Min Kim;Jeong-Hwan Kim;Dan-Hee Yoo;Se-Yeong Jeon;Hyun-Jin Kim;Seon-Gil Do;In-Chul Lee;Jung-Wook Kang
    • Food Science and Preservation
    • /
    • v.31 no.2
    • /
    • pp.315-323
    • /
    • 2024
  • This study aims to confirm the anti-inflammatory activities of acemannan and aloesin, which have been studied for various efficacies at various mixed sample ratios. The mixed samples were mixed at a ratio of 1:1 (AA-1), 1:2 (AA-2), 1:3 (AA-3), 2:1 (AA-4), and 3:1 (AA-5). Seven samples were evaluated for their cytotoxic ability on macrophages, and the results showed that all cell viability was over 90% at a concentration of 100 ㎍/mL. First, due to the NO production inhibitory activity, a better inhibitory effect was achieved when using a mixed sample rather than a single material. Afterward, the activity of inhibiting the production of PGE2, TNF-α, and IL-6 was confirmed using a mixed sample. It was confirmed that AA-2 had the best inhibitory activity on producing PGE2, TNF-α, and IL-6 rather than AA-1, AA-3, AA-4, and AA-5. For this reason, experiments were conducted using AA-2 to determine the protein expression levels of iNOS and COX-2, which are inflammation-related proteins. It was confirmed that AA-2 inhibited iNOS and COX-2 protein expression by 25.01% and 27.27%, respectively, compared to the LPS-alone treatment group. In conclusion, the mixed sample of acemannan and aloesin is judged to have anti-inflammatory activity and can potentially to be used as a functional material.