• Title/Summary/Keyword: AZO films

Search Result 244, Processing Time 0.022 seconds

A Study of the Optimal Process Conditions of AZO:H2 Thin Film for Maximization of the Transmittance of a Blue GaN Light-Emitting Diode with a Wavelength of 470 nm

  • Hwang, Seung-Taek;Park, Choon-Bae;Hoang, Geun-C.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.6
    • /
    • pp.279-284
    • /
    • 2010
  • This study has been carried out to determine the optimal process conditions of $AZO:H_2$ thin films for the maximization of the transmittance of a blue GaN light-emitting diode (LED) with a wavelength of 470 nm. The Al-doped zinc oxide $(AZO):H_2$ thin films were deposited on a sapphire substrate by radio-frequency magnetron sputtering system with varying substrate temperatures, working pressures and annealing temperatures temperature, working pressure and annealing imposed on a AZO (2wt% $Al_2O_3$) ceramic target. The effect of these variables was investigated in order to improve the light extraction efficiency of the LED. As a result, the (002)-oriented peak was found in all the $AZO:H_2$ thin films. The lowest resistivity and the best transmittance at a wavelength of 470 nm was found to be $4.774\;{\times}\;10^{-4}\;{\Omega}cm$ and 92% at a substrate temperature of $500^{\circ}C$, working pressure of 7 mTorr and annealing temperature of $400^{\circ}C$. The transmittance of the $AZO:H_2$ thin film for the Blue GaN LED was improved by approximately 13% relative to that of a ITO thin film (T = 79%).

Effects of Oxygen Flow Ratio on the Structural and Optical Properties of Al-doped ZnO Thin Films (산소 유량비 변화에 따른 Al 도핑된 ZnO 박막의 구조 및 광학적 특성)

  • Son, Young-Gook;Hwang, Dong-Hyun;Cho, Shin-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.4
    • /
    • pp.267-272
    • /
    • 2007
  • Al-doped ZnO (AZO) thin films were grown on glass substrates by radio-frequency magnetron sputtering. The effects of oxygen flow ratio, which was used for a sputtering gas, on the AZO thin films were investigated by using the X-ray diffraction (XRD), atomic force microscopy (AFM), and Hall effects measurement. The AZO thin film, deposited with oxygen flow ratio of 0% at the growth temperature of $400^{\circ}C$, showed a strongly c-axis preferred orientation and the lowest resistivity of $6.9{\times}10^{-4}{\Omega}cm$. The ZnO (002) diffraction peak indicated a tendency to decrease substantially with increasing the oxygen flow ratio. Furthermore, as the oxygen flow ratio was decreased, the carrier concentration and the hall mobility were increased, but the electrical resistivity was decreased.

Study on the Crystal Growth Behavior and Opto-Electrical Properties of Transparent Conducting Oxide Films with Au-Interlayer Fabricated by Using a Low-temperature Process (저온 박막 공정으로 제작된 Au 적층형 다층 투명전극의 결정성장 거동과 광-전기적 특성)

  • Ji, Young-Seok;Choi, Yong;Lee, Sang-Heon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.352-356
    • /
    • 2011
  • Transparent conducting oxide films like ITO/Au/ITO and AZO/Au/AZO were fabricated with a sputter at a low-temperature of less then $70^{\circ}C$ and their crystallization and opto-electrical properties were studied. X-ray diffractiometry showed that single-ITO layer was amorphous, whereas, ITO of ITO/Au/ITO multi-layer was crystal. The ITO crystallization and its orientation depended on Au crystallization. Surface roughness of the ITO-multi-layers were in the range of 29-88% of that of ITO-single layer. ITO on amorphous gold layer had more rough surface than ITO on crystal gold. The gold layer between ITO improved electrical conductivity. Carrier density, mobility, resistivity and sheet resistance of ITO-single layer were $2.3{\times}10^{19}/cm^3$, $85{\times}cm^2$/Vs, $31{\times}10^{-4}{\Omega}cm$, and $310{\times}{\Omega}/cm^2$, respectively. Those of ITO/Au/ITO-multi-layers depended on Au-interlayer-thickness, which were in the range of $3.6{\times}10^{19}{\sim}4.2{\times}10^{21}/cm^3$, $43{\sim}85cm^2$/Vs, $0.17{\times}10^{-4}{\sim}25{\times}10^{-4}{\Omega}cm$, and $1.7{\sim}20{\times}{\Omega}/cm^2$, respectively. The sheet resistances of the single-layer ITO and the multi-layer ITO were 310 and $2.7{\sim}21{\Omega}/cm^2$, respectively. That of AZO/Au/AZO was $8.6{\Omega}/cm^2$, which was better than the single-layer ITO.

Preparation AZO(ZnO:Al) Thin Film for FBAR. by FTS Method (대향타겟스퍼터링법에 의한 FBAR용 AZO(ZnO:Al) 박막의 제작)

  • 금민종;김경환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.422-425
    • /
    • 2004
  • In this study, the AZO thin films were prepared as a function of oxygen gas flow ratio at room temperature by FTS(Facing Targets Sputtering) apparatus using Zn:Al(metal)-Zn:Al(metal) or Zn(metal)-ZnO:Al(ceramic). The film thickness, crystalline and electric properties of AZO thin film was evaluated by $\alpha$-step, XRD and 4-point probe. In the results, the resistivity of AZO thin film was shown the lowest value about 8${\times}$10$^{-2}$ $\Omega$-cm(Zn:Al-Zn:Al), 3${\times}$10$^{-1}$ $\Omega$-cm(Zn-ZnO:Al) at the oxygen gas flow ratio 0.3. And the AZO thin film has good crystalline at oxygen gas flow ration 0.4, using Zn:Al-Zn:Al targets.

Optical and Electrical Properties with Various Post-Heating Temperatures in the Al-Doped ZnO Thin Films by Sol-Gel Process (졸-겔법에 의해 제조된 Al-Doped ZnO 박막의 후열처리 온도에 따른 전기 및 광학적 특성)

  • Ko, Seok-Bae;Choi, Moon-Sun;Ko, Hyungduk;Lee, Chung-Sun;Tai, Weon-Pil;Suh, Su-Jeong;Kim, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.742-748
    • /
    • 2004
  • Isopropanol of low boiling point was used as a solvent to prepare Al-doped ZnO(AZO) thin films. A homogeneous and stable sol was made from Zn acetate a solute whose mole concentration was 0.7mol/$\iota$ and Al chloride as a dopant. Al-doped ZnO thin films were prepared by sol-gel method as a function of post-heating temperature from 500 to $700^{\circ}C$ and the optical and electrical properties were investigated. The c-axis orientation along (002) plane was enhanced with the increasing of post-heating temperature and the surface morphology of the films showed a homogeneous and nano-sized microstructure. The optical transmittance of the films post-heated below $650^{\circ}C$ was over $86\%$, but decreased at $700^{\circ}C$. The electrical resistivity of the thin films decreased from 73 to 22 $\Omega$-cm as the post-heating temperature increased up to $650^{\circ}C$, but increased greatly to 580 $\Omega$-cm at $700^{\circ}C$. XPS analysis indicated that the deterioration of electrical and optical properties was attributed to the precipitation of $Al_2O_3$ phase on the surface of AZO thin film. This result suggests that the optimum post-heating temperature to improve electrical and optical properties is $600^{\circ}C$.

Effect of Pulse Frequency on the Properties of ZnO:Al Thin Films Prepared by Pulsed DC Magnetron Sputtering (펄스 DC 마그네트론 스퍼터링법에 의한 ZnO:Al 박막 증착시 펄스 주파수의 영향)

  • 고형덕;이충선;태원필;서수정;김용성
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.476-480
    • /
    • 2004
  • AZO (Al-doped ZnO) thin films were deposited on glass by pulsed magnetron sputtering method, and their structural, electrical and optical properties were investigated. XRD patterns showed that a highly c-axis preferred AZO film was grown in perpendicular to the substrate when pulse frequency of 30 ㎑ was applied to the target. Microstructure of thin films showed that the fibrous grain of tight dome shape was grown. The deposition rate decreased linearly with increase of pulse frequency, and the lowest resistivity was 8.67${\times}$10$\^$-4/ $\Omega$-cm for the film prepared at pulse frequency of 30 ㎑. The optical transmittance spectra of the films showed a very high transmittance of 85∼90%, within visible wavelength region and exhibited the absorption edge of about 350 nm. The characteristics of the low electrical resistivity and high optical transmittance of AXO films suggested a possibility for the application to transparent conducting oxides.

Effect of Growth Temperature on the Properties of Hydrogenation Al-doped ZnO Films (기판 온도에 따른 수소화된 Al-doped ZnO 박막의 특성 변화)

  • Tark, Sung-Ju;Kang, Min-Gu;Lee, Seung-Hoon;Kim, Won-Mok;Lim, Hee-Jin;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.17 no.12
    • /
    • pp.629-633
    • /
    • 2007
  • This study examined the effect of growth temperature on the electrical and optical properties of hydrogenated Al-doped zinc oxide (AZO:H) thin films deposited by rf magnetron sputtering using a ceramic target (98 wt.% ZnO, 2 wt.% $Al_2O_3$). Various AZO films on glass were prepared by changing the substrate temperature from room temperature to $200^{\circ}C$. It was shown that intentionally incorporated hydrogen plays an important role on the electrical properties of AZO : H films by increasing free carrier concentration. As a result, in the 2% $H_2$ addition at the growth temperature of $150^{\circ}C$, resistivity of $3.21{\times}10^{-4}{\Omega}{\cdot}cm$, mobility of $21.9cm^2/V-s$, electric charge carrier concentration of $9.35{\times}10^{20}cm^{-3}$ was obtained. The AZO : H films show a hexagonal wurtzite structure preferentially oriented in the (002) crystallographic direction.

Effects of Rapid Thermal Annealing on the Properties of AZO Thin Films Grown by Radio-frequency Magnetron Sputtering (라디오파 마그네트론 스퍼터링으로 증착된 AZO 박막의 특성에 대한 급속 열처리 효과)

  • Cho, Shin-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.377-383
    • /
    • 2009
  • Aluminum-doped zinc oxide (AZO) thin films were deposited on sapphire substrate by using radio-frequency magnetron sputtering and were performed in the temperature range of $600-900^{\circ}C$ by rapid thermal annealing (RTA). The crystallographic structure and the surface morphology were investigated by using X-ray diffraction and scanning electron microscopy, respectively. The crystallinity of the films was improved with increasing the annealing temperature and the average size of crystalline grains was found to be 50 nm. All the thin films showed an average transmittance of 92% in the wavelength range of 400-1100 nm. As the annealing temperature was increased, the bandgap energy was decreased and the violet photoluminescence (PL) signal at 400 nm replaced the ultraviolet PL signal. The electrical properties of the thin films showed a significant dependence on the annealing temperature.

Fabrication of Al-doped ZnO Thin Films by Vertical In-line DC Magnetron Sputtering

  • Heo, Gi-Seok;Kim, Tae-Won;Lee, Jong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.41-41
    • /
    • 2008
  • Al-doped ZnO (AZO) thin films have been fabricated by vertical in-line dc magnetron sputtering for transparent conducting oxides (TCOs) applications. The effects of substrate temperature and dc power on the characteristics of AZO thin films are investigated and also optimized the process conditions to get the best electrical and optical properties. The fabricated thin films show a good electrical and optical uniformity within ${\pm}5%$ over the whole area of substrate ($200mm\;{\times}\;200mm$) ; the minimum resistivity of $8\;{\times}\;10^{-4}\;{\Omega}cm$ and the average transmittance of 90% within the visible wavelength range. We have found that the band gap ($E_g$) increases with increasing substrate temperature and dc power, whereas the crystallinity is getting improved with increasing substrate temperature. The binding energy of Zn $2p_{3/2}$ and O 1s is observed to decrease as the substrate temperature increases.

  • PDF

Effect of Deposition and Heat Treatment Conditions on the Electrical and Optical Properties of AZO/Cu/AZO Thin Film (증착 및 열처리 조건에 따른 AZO/Cu/AZO 박막의 전기적·광학적 특성 평가)

  • Chan-Young Kim;Ha-Eun Lim;Gaeun Yang;Sukjeang Kwon;Chan-Hee Kang;Sang-Chul Lim;Taek Yeong Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.142-150
    • /
    • 2023
  • AZO/Cu/AZO thin films were deposited on glass by RF magnetron sputtering. The specimens showed the preferred orientation of (0002) AZO and (111) Cu. The Cu crystal sizes increased from about 3.7 nm to about 8.5 nm with increasing Cu thickness, and from about 6.3 nm to about 9.5 nm with increasing heat treatment temperatures. The sizes of AZO crystals were almost independent of the Cu thickness, and increased slightly with heat treatment temperature. The residual stress of AZO after heat treatment also increased compressively from -4.6 GPa to -5.6 GPa with increasing heat treatment temperature. The increase in crystal size resulted from grain growth, and the increase in stress resulted from the decrease in defects that accompanied grain growth, and the thermal stress during cooling from heat treatment temperature to room temperature. From the PL spectra, the decrease in defects during heat treatment resulted in the increased intensity. The electrical resistivities of the 4 nm Cu film were 5.9×10-4 Ω·cm and about 1.0×10-4 Ω·cm for thicker Cu films. The resistivity decreased as the temperature of heat treatment increased. As the Cu thickness increased, an increase in carrier concentration resulted, as the fraction of AZO/Cu/AZO metal film increased. And the increase in carrier concentration with increasing heat treatment temperature might result from the diffusion of Cu ions into AZO. Transmittance decreased with increasing Cu thicknesses, and reached a maximum near the 500 nm wavelength after being heat treated at 200 ℃.