• Title/Summary/Keyword: AZ80

Search Result 35, Processing Time 0.127 seconds

Corrosion Resistance for AZ31 Mg Alloy using Cr-free Conversion Coating (Cr-free 화성처리를 이용한 AZ31 마그네슘 합금의 내식성 향상 연구)

  • Heo, Gyu-Yong;Park, Yeong-Hui;Jeong, Jae-In;Yang, Ji-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.105-106
    • /
    • 2009
  • AZ31 (3% Al, 1% Zn) Mg 판재의 내식성 향상을 위해 Ti/Zr/Polymer 복합계의 Cr-free 화성처리 방법을 이용하였다. 염수분무시험을 통해 최고 72시간 ($5{\sim}10%$ 발청) 내식성이 나타남을 확인하였다. 화성피막의 내식성은 그 피막이 가진 성분, 균일도, 치밀도, 형상 및 두께에 의해 좌우되는 만큼 TEM, SEM을 통해 화성피막 구조가 내식성과 어떠한 관련이 있는지 조사하였다. 또한, 화성처리 전 단계 공정인 탈지와 산세 및 중화 공정의 변수 조절을 통해 전처리 공정이 최종 화성피막의 물성에 어떠한 영향을 미치는지 조사하였다. 탈지조건을 $35{\sim}40^{\circ}C$, 5분에서 $50{\sim}80^{\circ}C$, $10{\sim}20$분으로 변경 시 좀 더 균일한 외관을 얻을 수 있었고, 적절한 중화제 선택을 통해 화성피막을 균일하게 형성시킬 수 있었다. 투과전자현미경 결과로 미루어 화성피막의 두께보다 균일도와 치밀도가 내식성에 결정적인 영향을 미치는 것을 확인할 수 있었다.

  • PDF

Energetic Thermoplastic Elastomers from Azidated Polyepichlorohydrin Rubber (Az-PECH)/ Styrene Acrylonitrile Copolymer (SAN) Blends (아지드화 폴리에피클로로히드린 고무/스티렌-아크릴로니트릴 공중합체 블렌드로부터 에너지함유열가소성탄성체 제조)

  • Choi, Myung-Chan;Chang, Young-Wook;Noh, Si-Tae;Kwon, Jung-Ok;Kim, Dong-Kook;Kwon, Soon-Kil
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.375-380
    • /
    • 2009
  • Polyepichlorohydrin rubber was treated with sodium azide (Na$N_3$) to replace its chlorine by azide ($N_3$). Then, the azidated polyepichlorohydrin rubber (Az-PECH) was blended with thermoplastic styrene-acrylonitrile copolymer with the rubber/plastic ratio of 80/20, 70/30 and 60/40 (wt/wt). The miscibility, mechanical and dynamic mechanical properties as well as elastic recovery properties of the blends were evaluated by DMA (Dynamic Mechanical Analyzer) and tensile tests. When azidation level in azidated PECH was upto 50%, the blends exhibited excellent miscibility, manifested by a single $T_g$, and fairly good elastic recovery. When azidation level was 75%, the blends showed phase separation. The miscible Az-PECH/SAN blends exhibited typical thermoplastic elastomer like properties, ie. melt processibility and high extensibility as well as good elastic recovery rate. It was also observed from combustion test that higher energy is released with the increase in the azidation level of the Az-PECH in the blends.

Effects of Tool Speed on Joining Characteristics during Friction Stir Spot Welding of Mg-alloy(AZ31B) Sheet (마그네슘합금(AZ31B) 판재의 마찰교반 점용접시 접합특성에 미치는 툴 속도의 영향)

  • Shin, Hyung-Seop;Jung, Yoon-Chul;Choi, Kwang
    • Journal of Welding and Joining
    • /
    • v.29 no.2
    • /
    • pp.80-87
    • /
    • 2011
  • In this study, the friction stir spot welding (FSSW) of Mg alloy sheets has been tried using an apparatus devised with a CNC milling machine to give the precise control of joining condition including tool speed. The probe tool used is made of hard metal and composed of cylindrical shoulder and pin parts. The variation of morphologies formed after the friction stir spot welding depending on the plunge speed of the tool were investigated at each rpm of tool. The history of the temperature distribution and the vertical load induced during the spot welding with friction time were measured by using an Infrared Thermal Imager (THERMA CAMTM SC2000) and a loadcell located below the specimen fixture, respectively. Tensile-shear tests were also performed to evaluate the fracture load of welded specimens. In order to characterize the friction stir spot welding of Mg alloy sheets, the variation of the fracture load was discussed on micrographic observations, temperature distribution during the FSSW according to the plunge speeds of tool.

An Investigation of Pulse Anodization Duty Ratio and Sealing Treatment on the Corrosion Behavior of the Anodic Coating Layer in Magnesium AZ31B

  • Setiawan, Asep Ridwan;Rachman, Muhammad Dani
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.45-51
    • /
    • 2021
  • In this work, we describe the effect of pulse anodizing duty ratio on the corrosion resistance of anodic films in magnesium AZ31B. The process involves the application of square pulse potential for a constant period with a duty ratio varying from 40, 60 and 80%. In several samples, a sealing treatment for 30 minutes was conducted after anodization in order to seal the pores available in the anodic layer. After anodizing, the surface morphology of the anodic layer was examined using a scanning electron microscope (SEM Hitachi SU3500). The corrosion characteristics of the sample were evaluated through an open circuit potential (OCP) and potentiodynamic polarization test using potentiogalvanostat. SEM observation shows that the increase of anodization duty ratio (α) results in a more uniform anodic layer, with fewer pores and cracks. The increase of duty ratio (α) decreases the OCP value from approximately -1.475 to about -1.6 Volt, and significantly improves the corrosion resistance of the anodic coating by 68%. The combination of anodization and sealing treatment produces an anodic coating with a very low corrosion rate of 4.4 mpy.

Influence of OH- Ion Concentration on the Properties of Eelectrolytic Plasma Oxide Coatings Formed on AZ61A Alloy (전해 플라즈마 공정에 의해 AZ61A 합금에 형성된 산화물층의 특성에 미치는 OH- 이온 농도의 영향)

  • Shin, Seong Hun;Jeong, Young Seung;Rehman, Zeeshan Ur;Koo, Bon Heun
    • Korean Journal of Materials Research
    • /
    • v.26 no.10
    • /
    • pp.513-520
    • /
    • 2016
  • The effect of NaOH concentration on the properties of electrolytic plasma processing (EPP) coating formed on AZ61A Mg alloy is studied. Various types of EPP were employed on magnesium alloy AZ61A in a silicate bath with different concentrations of NaOH additive. Analysis of the composition and structure of the coating layers was carried out using an X-ray diffractometer (XRD) and a scanning electron microscope (SEM). The results showed that the oxide coating layer mainly consisted of MgO and $Mg_2SiO_4$; its porosity and thickness were highly dependent on the NaOH concentration. The Vickers hardness was over 900 HV for all the coatings. The oxide layer with 3 g/l of NaOH concentration exhibited the highest hardness value (1220 HV) and the lowest wear rate. Potentiodynamic testing of the 3 g/l NaOH concentration showed that this concentration had the highest corrosion resistance value of $2.04{\times}10^5{\Omega}cm^2$; however, the corrosion current density value of $5.80{\times}10^{-7}A/cm^2$ was the lowest such value.

Corelation between crystalline phase and corrosion resistance of Mg alloy with different PEO conditions. II. Corrosion resistance (Mg 합금의 PEO 공정 조건에 따른 산화피막 결정상과 내부식성에 대한 연구 II. 내부식성)

  • Kim, Bae-Yeon;Kim, Yong-Nam;Jeon, Min-Seok;Ham, Jae-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.2
    • /
    • pp.80-84
    • /
    • 2018
  • Mg alloys AZ31 and AZ91 were Plasma-Electrolytic-Oxidized in Na-P and Na-Si system electrolyte at various concentration, applied voltage and time. Thickness and surface roughness of PEO coating were examined. Salt spraying test were carried out to compare their corrosion resistances. Generally, corrosion resistances rate were increased as thickness and crystallinity increasing. Size of pore being larger, long term corrosion resistance decreased. It is turned out that $Mg_2SiO_4$ and other crystalline phase rather than MgO might be increase corrosion resistance dramatically.

Effect of Mean Stress on Probability Distribution of Random Grown Crack size in Magnesium Alloy AZ31 (평균응력이 AZ31 마그네슘합금의 렌덤진전균열크기 확률분포에 미치는 영향)

  • Choi, Seon-Soon;Lee, Ouk-Sub
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.536-543
    • /
    • 2009
  • In this paper the mean stress effects on the probability distribution of the random grown crack size at a specified loading cycle are studied through the fatigue crack propagation tests, which are conducted on the specimens of magnesium alloy under four different stress ratios. Through 80 replicates the probability distributions of the grown crack size are obtained. The goodness-of-fit for probability distributions of the random grown crack size are investigated by Anderson-Darling test and the best fit for those probability distributions is found to be a 3-parameter Weibull distribution. The effects of the mean stress on the probability distribution of the random grown crack size are also estimated.

  • PDF

Solid State Joining Processes for Dissimilar Joints of Mg/Al Alloys (고상접합을 이용한 Al/Mg 합금의 이종 용접)

  • Kim, Heung-Ju;Kim, Wook-Seong;Chun, Chang-Keun;Chang, Woong-Seong
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.41-41
    • /
    • 2009
  • To evaluate the applicability of dissimilar joining between Mg and Al alloys in automobile manufacturing process, solid state joining processes such as magnetic pulse welding(MPW), friction stir welding(FSW) and friction spot joining(FSJ) were attempted successfully. MPW process has been concentrated mainly on round section tube to tube and tube to bar welds. AZ31 Mg alloy has been successfully welded to pure Al A1070 as well as to Al alloy A3003. While, for friction stir welding of dissimilar sheet joints, AZ31B/A6061 with the thickness of 2mm were used and a square butt joint with a good quality was obtained at the conditions of 0.8mm/sec of travel speed and tool rotation speed of 850rpm. The maximum tensile strength of 179 MPa, which was about 80 % of the Mg base metal tensile strength, has been obtained. Finally, friction spot joining was attempted to make a dissimilar lap joint between AZ31(0.8mm) and A6061(1mm), while the joint exhibited the same level of tensile shear strength as that of similar Mg joint.

  • PDF

Mechanical Properties of Friction Joint of AZ31Mg Alloy (AZ31마그네슘합금의 마찰접합특성)

  • Kong, Y.S.;Chun, B.K.;Kang, D.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.5
    • /
    • pp.277-282
    • /
    • 2010
  • Magnesium alloy has been known as lightweight material in automobile and electronic industry with aluminum alloy, titanium alloy and plastic material. Friction welding is useful to join various metals and nonferrous metals that are difficult to join by such as gas welding, resistance welding and electronic beam welding. In this study, friction joining was performed to investigate mechanical properties of Mg alloy with 20mm diameter solid bar. Also the optimal joining conditions for its application were determined on the basis of tensile test, and hardness survey. The joining parameters were chosen as heating pressure, heating time, upsetting pressure, and upsetting time. Heating and upsetting pressure were executed under the range of 10~40MPa and 20~80MPa, respectively. From the experimental results, optimal joining conditions were determined as follows; rotating speed=2000rpm, heating pressure=35MPa, upsetting pressure=70MPa, heating time=1sec, upsetting time=5sec. Also the hardness of jointed boundary showed as HV50 which was similar to that of base metal at the optimal condition, and it was supposed that zone of HAZ was 8mm. Finally two materials were strongly mixed at interface part to show a well-combined microstructure without particle growth or any defect.

MIG-WELDING OF MAGNESIUM ALLOYS WITH PARTICULAR CONSIDERATION OF DROP DETACHMENT

  • Wohlfahrt, H.;Rethmeier, M.;Wiesner, S.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.94-100
    • /
    • 2002
  • During the last years, great progress has been made in the fields of welding power sources and filler materials for the MIG-welding of magnesium alloys. This advice resulted in a better welding process, md, therefore, in highly improved welding results. Furthermore the gap between short-circuiting- and spray-arc-trunsfer could be closed by the triggered short-circuiting- and the short-circuiting-arc with pulse overlay. A crucial contribution to the welding process is the energy input into the filler material. Many problems result from the physical properties of magnesium, for instance its narrow interval between melting point 600$^{\circ}C$ and vaporization point 1100$^{\circ}C$. The energy input into the filler material has to be regulated in such a way that the wire will melt but not vaporize. For th is reason, special characteristics of power sources hue been examined and optimized with the help of high-speed-photographs of the welding process with particular consideration of the drop detachment. An important improvement of the weld seam profile has been achieved by using filler material of only 1.2 mm in diameter. The experiments hue been made with 2.5 mm thick extruded profiles of AZ31 and AZ6l. The results of tensile testing showed strength values of 80 to 100% of the base metal. B ending angles up to 60$^{\circ}$ have been reached. The fatigue strength under reversed bending of the examined magnesium alloys after welding reaches 50% of the strength of the base metal. When the seam reinforcement is ground of the fatigue strength can be raised up to 75% of the base metal.

  • PDF