DOI QR코드

DOI QR Code

Influence of OH- Ion Concentration on the Properties of Eelectrolytic Plasma Oxide Coatings Formed on AZ61A Alloy

전해 플라즈마 공정에 의해 AZ61A 합금에 형성된 산화물층의 특성에 미치는 OH- 이온 농도의 영향

  • Shin, Seong Hun (School of Materials Science and Engineering, Changwon National University) ;
  • Jeong, Young Seung (School of Materials Science and Engineering, Changwon National University) ;
  • Rehman, Zeeshan Ur (School of Materials Science and Engineering, Changwon National University) ;
  • Koo, Bon Heun (School of Materials Science and Engineering, Changwon National University)
  • 신성훈 (창원대학교 신소재공학부) ;
  • 정영승 (창원대학교 신소재공학부) ;
  • ;
  • 구본흔 (창원대학교 신소재공학부)
  • Received : 2016.06.28
  • Accepted : 2016.08.30
  • Published : 2016.10.27

Abstract

The effect of NaOH concentration on the properties of electrolytic plasma processing (EPP) coating formed on AZ61A Mg alloy is studied. Various types of EPP were employed on magnesium alloy AZ61A in a silicate bath with different concentrations of NaOH additive. Analysis of the composition and structure of the coating layers was carried out using an X-ray diffractometer (XRD) and a scanning electron microscope (SEM). The results showed that the oxide coating layer mainly consisted of MgO and $Mg_2SiO_4$; its porosity and thickness were highly dependent on the NaOH concentration. The Vickers hardness was over 900 HV for all the coatings. The oxide layer with 3 g/l of NaOH concentration exhibited the highest hardness value (1220 HV) and the lowest wear rate. Potentiodynamic testing of the 3 g/l NaOH concentration showed that this concentration had the highest corrosion resistance value of $2.04{\times}10^5{\Omega}cm^2$; however, the corrosion current density value of $5.80{\times}10^{-7}A/cm^2$ was the lowest such value.

Keywords

References

  1. B. L. Mordike and T. Ebert, Mater. Sci. Eng. A, 302, 37 (2001). https://doi.org/10.1016/S0921-5093(00)01351-4
  2. H. Friedrich and S. Schumann, J. Mater. Process. Technol., 117, 276 (2001). https://doi.org/10.1016/S0924-0136(01)00780-4
  3. G. L. Song and A. Atrens, Adv. Eng. Mater., 1, 11 (1999). https://doi.org/10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
  4. H. E. Friedrich and B. L. Mordike, Design Data, Application, Springer-Verlag, Berlin (2006).
  5. J. E. Gray and B. Luan, J. Alloys Compd., 336, 88 (2002). https://doi.org/10.1016/S0925-8388(01)01899-0
  6. C. Gu, J. Lian, J. He and Z. Jiang, Surf. Coat. Technol., 200, 5413 (2006). https://doi.org/10.1016/j.surfcoat.2005.07.001
  7. O. Khaselev, D. Weiss and J. Yahalom, J. Electrochem. Soc., 146, 1757 (1999). https://doi.org/10.1149/1.1391838
  8. H. Fukuda and Y. Matsumoto, Corros. Sci., 46, 2135 (2004). https://doi.org/10.1016/j.corsci.2004.02.001
  9. C. S. Lin and Y. C. Fu, J. Electrochem. Soc., 153, B417 (2006). https://doi.org/10.1149/1.2257987
  10. P. Campestrini, E. P. M. van Westing, A. Hovestad and J. H. W. de Wit, Electrochim. Acta, 47, 1097 (2002). https://doi.org/10.1016/S0013-4686(01)00818-0
  11. H. S. Ryu, J. Ryu, D.-S. Park and S.-H. Hong, J. Electrochem. Soc., 158, C23 (2011). https://doi.org/10.1149/1.3525271
  12. A. L. Rudd, C. B. Breslin and F. Mansfeld, Corros. Sci., 42, 275 (2000). https://doi.org/10.1016/S0010-938X(99)00076-1
  13. M. F. Montemor, A. M. Simões and M. J. Carmezim, Appl. Surf. Sci., 253, 6922 (2007). https://doi.org/10.1016/j.apsusc.2007.02.019
  14. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S. J. Dowey, Surf. Coat. Technol., 122, 73 (1999). https://doi.org/10.1016/S0257-8972(99)00441-7
  15. C. Blawert, W. Dietzel, E. Ghali and G. Song, Adv. Eng. Mater., 8, 511 (2006). https://doi.org/10.1002/adem.200500257
  16. A. L.Yerokhin, A. Shatrov, V. Samsonov, P. Shashkov, A. Leyland and A. Matthews, Surf. Coat. Technol., 182, 78 (2004). https://doi.org/10.1016/S0257-8972(03)00877-6
  17. R. Arrabal, E. Matykina, T. Hashimoto, P. Skeldon and G. E. Thompson, Surf. Coat. Technol., 203, 2207 (2009). https://doi.org/10.1016/j.surfcoat.2009.02.011
  18. O. Khaselev, D. Weiss and J. Yahalom, Corros. Sci., 43, 1295 (2001). https://doi.org/10.1016/S0010-938X(00)00116-5
  19. L. Chai, X. Yu, Z. Yang, Y. Wang and M. Okido, Corros. Sci., 50, 3274 (2008). https://doi.org/10.1016/j.corsci.2008.08.038
  20. H. S. Ryu and S.-H. Hong, J. Electrochem. Soc., 156, C298 (2009). https://doi.org/10.1149/1.3158552
  21. H. S. Ryu and S.-H. Hong, J. Electrochem. Soc., 157, C131 (2010). https://doi.org/10.1149/1.3301829
  22. S. Moon, C. N. Yang and S. J. Na, J. Korea Inst. Surf. Eng., 47, 147 (2014). https://doi.org/10.5695/JKISE.2014.47.4.147
  23. S. L. Aktu, S. Durdu, I Kutbay and M. Usta, Ceram. Int., 42, 1246 (2016). https://doi.org/10.1016/j.ceramint.2015.09.056
  24. H. Duan, C. Yan and F. Wang, Electrochim. Acta., 52, 3785 (2007). https://doi.org/10.1016/j.electacta.2006.10.066
  25. R. Arrabal, E. Matykina, F. Viejo, P. Skeldon and G. E. Thompson, Corros. Sci., 50, 1744 (2008). https://doi.org/10.1016/j.corsci.2008.03.002
  26. J. Liang, P. B. Srinivasan, C. Blawert, M, Stormer and W. Dietzel, Electrochim. Acta, 54, 3842 (2009). https://doi.org/10.1016/j.electacta.2009.02.004
  27. S. Yagi, A. Sengoku, K. Kubota and E. Matsubara, Corros. Sci., 57, 74 (2012). https://doi.org/10.1016/j.corsci.2011.12.032
  28. S. Stojadinovi, R. Vasili, J. Radi-Peri and M. Peri, Surf. Coat. Technol., 273, 1 (2015). https://doi.org/10.1016/j.surfcoat.2015.03.032
  29. S. Moon, J. Solid. State. Electrochem., 18, 341 (2014). https://doi.org/10.1007/s10008-013-2247-4
  30. J. Liang, B. Guo, J. Tian, H. Liu, J. Zhou and T. Xu, Appl. Surf. Sci., 252, 345 (2005). https://doi.org/10.1016/j.apsusc.2005.01.007
  31. B. Kazanski, A. Kossenko, M. Zinigrad and A. Lugovskoy, Appl. Surf. Sci., 287, 461 (2013). https://doi.org/10.1016/j.apsusc.2013.09.180
  32. J. Liang, L. Hu and J. Hao, Electrochim. Acta, 52, 4836 (2007). https://doi.org/10.1016/j.electacta.2007.01.059
  33. M. Mohedano, C. Blawert and M. L. Zheludkevich, Mater. Des., 86, 735 (2015). https://doi.org/10.1016/j.matdes.2015.07.132
  34. X. Lu, C. Blawert, Y. Huang, H Ovri, M. L. Zheludkevich and K. U. Kainer, Electrochim. Acta, 187, 20 (2016). https://doi.org/10.1016/j.electacta.2015.11.033
  35. X. Lu, C. Blawert, M. L. Zheludkevich and K. U. Kainer, Corros. Sci., 101, 201 (2015). https://doi.org/10.1016/j.corsci.2015.09.016
  36. S. Moon and Y. Nam, Corros. Sci., 65, 494 (2012). https://doi.org/10.1016/j.corsci.2012.08.050
  37. R. R. Nevyantseva, S. A. Gorbatkov, E. V. Parfenov and A. A. Bybin, Surf. Coat. Technol., 148, 30 (2001). https://doi.org/10.1016/S0257-8972(01)01334-2
  38. R. H. U. Khan, A. L. Yerokhin, T. Pilkington, A. Leyland and A. Matthews, Surf. Coat. Technol., 200, 1580 (2005). https://doi.org/10.1016/j.surfcoat.2005.08.092
  39. L. O. Snizhko, A. L. Yerokhin, N. L. Gurevina, V. A. Patalakha and A. Matthews, Thin Solid Films, 516, 460 (2007). https://doi.org/10.1016/j.tsf.2007.06.158
  40. J. R. Morlidge, P. Skeldon, G. E. Thompson, H. Habazaki, K. Shimizu and G. C. Wood, Electrochim. Acta, 44, 2423 (1999). https://doi.org/10.1016/S0013-4686(98)00363-6
  41. H. Guo, M. An, S. Xu and H. Huo, Thin Solid Films, 485, 53 (2005). https://doi.org/10.1016/j.tsf.2005.03.050
  42. C. Blawert, W. Dietzel, E. Ghali and G. Song, Adv. Eng. Mater., 8, 511 (2006). https://doi.org/10.1002/adem.200500257
  43. H. Ma, D. Li, C. Liu, Z. Huang, D. He, Q. Yan, P. Liu, P. Nash and D. Shen, Sur. Coat. Technol., 266, 151 (2015). https://doi.org/10.1016/j.surfcoat.2015.02.033
  44. P. Zhang, X. Nie and D. O. Northwood, Sur. Coat. Technol., 203, 3271 (2009). https://doi.org/10.1016/j.surfcoat.2009.04.012
  45. L. D. Liu, S. F. Hsieh, C. Y. Lee and C. S. Liu, J. Electrochem. Soc., 155, C307 (2008). https://doi.org/10.1149/1.2908878
  46. A. L. Yerokhin, A. A. Voevodin, V. V. Lyubimov, J. Zabinsk and M. Donley, Surf. Coat. Technol., 110, 140 (1998). https://doi.org/10.1016/S0257-8972(98)00694-X