• 제목/요약/키워드: AWS 기상관측소

검색결과 41건 처리시간 0.037초

수문기상 가뭄정보 시스템 소개 (Introduction of Hydrometeorological Drought Monitoring System)

  • 김민지;오태석;강혜영;백문희;박철홍
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.317-317
    • /
    • 2019
  • 기상청에서는 시스템 이용자의 편의와 자료의 활용 증진을 위해 분리되어 있던 수문기상과 가뭄정보를 하나로 통합하여 '수문기상 가뭄정보 시스템(https://hydro.kma.go.kr)을 2017년 8월 1일부터 운영하고 있다. 본 시스템은 일반국민과 물관리 유관기관(회원)을 대상으로 관측, 수문기상 감시 예측, 기상 가뭄분석 전망으로 나눠 정보를 생산하여 서비스가 제공하고 있다. 수문기상 서비스는 관측 강수량(기상청, 유관기관), 기상청 위성 토양수분량 및 증발산량 자료와 레이더 관측 자료(Radar AWS Rainrate, RAR)를 GIS 기반 유역단위별(4대강권, 대권역, 중권역, 표준유역단위)로 관측 정보를 제공하며, UM(3km), 멀티모델앙상블, 레이더(MAPLE), 유역강수지수자료들로 예측 서비스를 제공하고 있다. 또한, 메타정보를 통해 유역별, 관측소별 상세조회가 가능하여 원하는 유역 또는 관측소를 선택 시 GIS지도에 위치가 표시되며 선택 지점의 정보를 손쉽게 확인할 수 있다. 가뭄 정보는 기상 가뭄 예보 정보와 가뭄 감시 정보를 제공하고 있다. 기상 가뭄 예보 정보는 매주 금요일에 발표되고 있는 기상 가뭄 예보 1개월 전망과 매월 10일경 관계부처(행정안전부, 기상청, 환경부, 농림축산식품부) 합동으로 발표하고 있는 가뭄 예 경보 3개월 전망자료를 제공하고 있으며, GIS 기반 행정구역 및 유역별로 나눠 여러 가지 가뭄지수(표준강수지수, 표준강수증발산지수, 강수평년비, 유효가뭄지수)를 활용하여 기상 가뭄 감시 정보를 제공하고 있다. 또한, 가뭄 감시 현황 정보는 다양한 형태(시계열, 가뭄지수 조회 및 다운로드, 분포도 비교)로도 확인할 수 있으며, 강수량분석 통계(누적 강수량, 강수량 순위, 무강수일수) 정보를 제공한다. 그 밖에 관측 자료(강수량 분포도, 토양수분량, 증발산량 등), 월별 언론모니터링 자료 등을 제공하고 있다. 향후 수문기상과 가뭄 재해에 선제적으로 대응하여 안정적인 물관리를 지원하고 자료의 신뢰도를 지속적으로 제고하여 우리나라에 맞는 수문기상 가뭄정보 시스템으로 거듭나도록 노력해 나갈 것이다.

  • PDF

머신러닝기반의 사물인터넷 도시기상 관측자료 품질검사 알고리즘 개발에 관한 연구 (A study on the development of quality control algorithm for internet of things (IoT) urban weather observed data based on machine learning)

  • 이승운;정승권
    • 한국수자원학회논문집
    • /
    • 제54권spc1호
    • /
    • pp.1071-1081
    • /
    • 2021
  • 본 연구에서는 기상청에서 수행하는 기존의 기상 관측에 대한 품질관리 절차 이외에 향후 스마트시티 등에서 활용될 수 있는 머신러닝 기반의 Internet of Things (IoT) 도시기상 관측 자료에 대한 품질검사 기준을 제안한다. 현재 기상청에서 종관기상관측(Automated Synoptic Observing System, ASOS)과 방재기상관측(Automatic Weather System, AWS) 기반으로 설정한 기준이 도시기상에 적합한지 확인하기 위하여 서울시에 설치된 SKT AWS 자료를 기반으로 사용성을 검증하였고, IoT 자체의 데이터가 가지는 특성을 고려하여 최종적으로 머신러닝 기반의 품질검사 알고리즘을 제안하였다. 품질검사 방법으로는 IoT 기기 자체에 대한 결측값 검사, 값 패턴 검사, 충분 데이터 검사, 통계적 범위 이상 검사, 시간값 이상 검사, 공간값 이상 검사를 먼저 수행하고, 기상청에서 제시하고 있는 기상 관측에 대한 품질검사인 물리한계검사, 단계검사, 지속성 검사, 기후범위 검사, 내적 일치성 검사를 5가지 기상요소에 대하여 각각 수행하였다. 제안한 알고리즘의 검증을 위하여 인천광역시 송도에 위치한 관측소에 실제 IoT 도시기상관측 데이터에 이를 적용하였다. 이를 통해 기존의 기상청 QC로는 확인할 수 없었던 IoT 기기가 가질 수 있는 결함을 확인할 수 있고, 알고리즘에 대한 검증을 진행하여 향후 스마트시티에 설치될 IoT 기상관측기기에 대한 품질검사 방법을 제안한다.

통계분석을 이용한 최적 레이더 보정 지점 선정에 대한 연구 (Study of Optimal G/R Ratio using Statistical Analysis for Radar Rainfall Estimation)

  • 정영훈;정창삼;고익환;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.103-106
    • /
    • 2009
  • 우리나라의 경우 자연 재해로 인한 피해를 감소시키기 위해 첨단 레이더 관측시스템을 설치 및 운영하고 있으며 활용도 또한 증가하고 있어 기상재해를 대비한 정확하고 용이한 레이더 강우량 추정은 필수적 요소라 하겠다. 강우량 추정은 대기 중의 강우 입자들로부터 반사된 전파의 세기 즉 레이더의 반사도 자료와 강우와의 관계를 이용하여 강우량을 산출하며 가장 보편적으로 Marshall and Palmer (1948)에 의해 연구된 Z-R 관계식을 이용하여 강우량을 추정하고 있다. 기존의 레이더 강우량 추정시 사용되는 보정 방법인 G/R (우량계/레이더) 비는 대상유역을 격자로 나눴을 경우 강우관측소가 위치한 격자와 주변 8개의 위치한 격자의 면적강우량을 산술평균하여 사용하고 레이더 자료와 강우관측소의 강우자료를 비교하여 보정한 후 강우량을 추정하고 있다. 그러나 G/R 비를 평균하여 보정할 경우 대상유역에 위치한 강우자료가 오측이거나 관측이 되지 않았을 경우 관측지점의 강우량 추정에 영향을 주게 되며 G/R 비를 산출할 시 강우관측소가 가지는 오차를 줄이기 위하여 강우관측소의 강우자료와 레이더 자료간의 보정이 필요하다고 사료된다. 따라서 본 연구에서는 레이더의 관측반경은 480km 까지 가능하지만 양질의 자료를 사용하기 위해 광덕산에 위치한 레이더의 반경 100km 내의 강우관측소를 이용하였으며 기상청에서 운영하고 있는 94개 지점의 AWS (automatic weather system)를 이용하여 대상유역에 위치한 강우관측소의 강우자료와 레이더 강우량에 통계분석을 하여 최적의 G/R 비를 산정한 후 레이더 강우량을 추정하였다. 또한 추정된 강우량을 관측된 강우량과 비교하여 적용성을 판단하였다.

  • PDF

기상레이더와 분포형 모형을 이용한 실시간 유출해석 시스템 개발 및 평가 (Development and Evaluation of a Real Time Runoff Modelling System using Weather Radar and Distributed Model)

  • 최윤석;김경탁;김주훈
    • 한국습지학회지
    • /
    • 제14권3호
    • /
    • pp.385-397
    • /
    • 2012
  • 격자 기반의 물리적 분포형 모형은 유역의 물리적 매개변수와 격자 형식의 공간 및 수문자료를 이용해서 유출해석을 수행한다. 본 연구에서는 격자 기반의 물리적 분포형 강우-유출 모형인 GRM(Grid based Rainfall-runoff Model)의 실시간 유출해석 모듈인 GRM RT(Real Time)를 이용해서 실시간 유출해석 시스템을 개발하였다. 실시간으로 수신되는 기상레이더 자료를 기상청의 실시간 AWS 자료를 이용하여 보정한 후 유출해석에 적용하며, 수위관측소 자료로부터 생성되는 유량자료를 이용해서 유출모형을 실시간 보정한다. 본 연구에서는 실시간 유출해석 시스템 구축을 위해서 필요한 데이터베이스를 설계 및 구현하였으며, 분포형 모형과 레이더 자료를 이용한 실시간 유출해석 절차를 정립하였다. 또한 개발된 시스템의 성능을 평가하고 실시간 모형보정에 대한 적용성을 평가하였다. 소양강댐 상류에 위치한 내린천 수위관측소 유역을 대상으로 실시간 유출해석 시스템을 적용하고 그 결과를 평가하였다.

차량용 강우 센서의 신호체계(signal)와 관측자료와의 상관관계 분석을 통한 회귀식 개발

  • 김영곤;정세진;이석호;김병식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.218-218
    • /
    • 2016
  • 차량용 강우 센서는 강우측정이 어려운 지역의 강수량 측정이 가능하고, 실시간으로 강우정보를 생성해 내기 때문에 차세대 강우측정기로써 전망이 기대된다. 차량용 강우 센서는 일반적인 강우관측기와 달리 물 입자가 커질수록 빛의 산란이 크게 일어나는 현상을 이용한다. 산란이 크게 일어나면 강우 센서에 입력되는 값이 줄고 이는 강수가 높다는 것을 의미한다. 강우가 발생하면 자동차 전면 유리창에 부착된 강우 센서가 감지하는 우적량을 강우량으로 환산하는 방법을 통해 강우량을 산정한다. 강우가 쌓이고 나서 나중에 그 값을 측정하는 것이 아니라 즉시 그 값을 계산하여 강우량을 산출해야하기 때문에 단계가 복잡하다. 수식이 복잡할수록 오차가 발생할 확률도 크고 처리 속도도 느려지기 때문에 W-S-R 관계식을 이용하여 복잡한 수식을 간단하게 정리할 필요가 있다. AWS 기상관측소와의 비교 분석을 위해 차량에 우량계를 장착하였으며 W-S-R 관계식을 통하여 상관관계 분석하여 회귀식을 도출 한다. W-S-R 관계식이라 함은 와이퍼의 속도관계(W), 강우센서(S), 실제 강우(R)을 의미한다. 여기서 와이퍼의 속도관계는 와이퍼의 한 번 이동 했을 시 실제 강우는 실내강우발생 장비를 제작하여 10~80mm의 강우를 발생시키고 그 값은 우량계로 관측한다. 본 연구에서는 물 입자의 산란과 차량용 강우 센서 간의 관계식 도출과 W-S-R 관계식을 이용하여 실제 강우 정보와의 상관관계를 위한 분석을 통한 회귀식 개발을 목표로 한다.

  • PDF

공간분석을 이용한 강원도 지역의 강수분포 분석 (I): 강수지역 구분과 계절별 및 연평균 강수량 분석 (Analysis of Precipitation Distribution in the region of Gangwon with Spatial Analysis (I): Classification of Precipitation Zones and Analysis for Seasonal and Annual Precipitation)

  • 엄명진;정창삼;조원철
    • 한국방재학회 논문집
    • /
    • 제9권5호
    • /
    • pp.103-113
    • /
    • 2009
  • 본 연구에서는 관측소의 지리적 위치 및 강수특성(월별, 계절별, 연평균)을 이용하여 강원도의 강수지역을 구분하였다. 강수지역 구분은 기상관측소 66개소(기상관서: 11개소, 자동기상시스템(AWS): 55개소)의 자료를 이용하였으며, 통계적 방법 중 군집 기법인 K-means 방법을 적용하였다. 지역구분 결과, 강수지역은 5개 지역(영동지방 1개 지역 및 영서지방 4개 지역)으로 구분하였다. 계절별 평균강수량은 봄에는 강원도 전체에 유사하게 발생하였으며, 여름에는 영서지방이 높게 나타났으며, 가을과 겨울에는 영동지방이 높게 발생하였다. 연평균 강수량 및 여름철 강수량의 공간분석 결과 강원도 중 일부 지역(미시령 및 대관령일원)은 산악형 강수 특성을 나타냈으나 전반적인 현상은 아닌 것으로 판단되었다. 그러나 보다 정확한 분석을 위해서는 관측소의 고도별 분포가 미흡한 것으로 나타난 관측소의 보완 및 AWS의 자료 확충이 필요할 것으로 판단된다.

강우특성의 동질성을 고려한 유역 평균 강우량이 수문모형의 성능 개선에 미치는 영향 평가 (Sensitivity of a hydrological model to areal precipitation estimates: impacts on precipitation data selection considering homogeneous rainfall regions)

  • 송정헌;김학관
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.351-351
    • /
    • 2023
  • 강우 자료는 수문 모델링에서 중요한 입력 요소 중 하나이다. 강우의 공간적 가변성은 모델링 불확실성의 중요한 원인으로 알려져 있다. 강우 관측자료는 많은 경우 유역을 대표하는 평균 면적강수량 (Mean Areal Precipitation, MAP)을 계산하여 수문모형에 입력된다. 선행 연구에서는MAP 예측 결과의 신뢰도를 개선하기 위하여 다양한 보간 방법이 개발되었다. 하지만, 강우특성의 동질성를 고려한 대표 기상 관측소 선정이 MAP 예측과 유출량 모의 결과에 미치는 연구는 아직 미흡한 실정이다. 본 연구에서는 유역의 MAP 예측에 있어 강우특성의 동실성을 고려한 강우 관측소 선정이 수문 모델링 성능 개선에 미치는 영향을 평가하고자 한다. 본 연구에서는 종관 기상관측(ASOS) 74개 지점과 방재기상관측(AWS) 400여개 지점에서 2003~2022년 기간에 대한 일강수량 자료를 수집하였고 강우특성이 동질한 지역을 구분하였다. 또한, 강우특성 동질성의 고려 유무에 따른 MAP를 계산하였다. 이후, 5개의 매개변수로 이루어진 개념적 강우-유출 모형FPHM을 사용하여 우리나라 전역 41개 유역을 대상으로 MAP 계산 결과가 모형 성능에 미치는 민감도를 조사하였다. 분석 결과, 강우특성의 동질성을 고려한 강우 관측소의 선택은 MAP 보간 방법 이상으로 중요한 요소임을 확인할 수 있었다.

  • PDF

초단기강우 예측을 위한 기상레이더 강우장 추적기법 개발 (Development of Radar Rainfall Tracking Technique for the Short-Term Rainfall Forecasting)

  • 김태정;소병진;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.2-2
    • /
    • 2015
  • 최근 국지성 집중호우 및 돌발홍수와 같은 급격한 기상변화로 인한 기상재해의 발생빈도가 증가함에 따라 기존 지상 기상관측소로부터 얻어지는 직접탐측 자료보다는 기상레이더와 위성영상 등 원격탐측 자료를 사용한 수문분야의 연구가 활발하게 진행되고 있다. 기상레이더는 넓은 지역에 걸쳐 실시간으로 강수현상 감시가 가능하며 지상우량계로는 파악이 불가능한 미계측 유역을 통과하는 국지적인 호우현상이나 강우장의 이동 및 변화의 파악도 빠른 시간에 가능한 장점이 있다. 본 연구는 기상레이더 공간적 분포와 지상관측소(AWS 및 ASOS) 자료를 연계한 통계적 레이더 강수량 추정(Quantitative Precipitation Estimation, QPE)과 레이더 강수장을 직접 추적하는 강수장 예측(Quantitative Precipitation Forecast, QPF)를 연계한 해석방안을 수립하였으며, 모형 적용과정은 다음과 같다. 첫째, 강우장의 공간적인 이동을 고려하기 위해 강우장으로 부터 이류(advection)패턴을 추출하여 각 강우세포가 가지는 이동방향 및 이동속도를 고려한 강우장 추적기법을 통하여 2시간의 선행시간을 가지는 강우장을 예측하고자 한다. 둘째, 과거 기상레이더 이미지와 지상관측소의 강수 특성을 파악한 후 앞서 예측된 레이더강우장의 형태와 가장 유사한 과거 레이더강우장과 동일 시간대에 지상관측소 강수시계열을 시나리오 형태로 구축한다. 본 연구를 통하여 개발된 기상레이더 영상 이미지 상관분석 기법을 활용한 초단기강우예측은 집중호우시 홍수 예 경보를 위한 수문모형의 입력자료로 활용이 가능하다. 즉, 수문모형과 연계한 고해상도 단기홍수 예측기술 적용이 가능할 것으로 판단되며, 향후 실시간 재해 예 경보에 활용성을 평가하고자 한다.

  • PDF

차량용 강우센서기반 강우센서 정보를 활용한 도로 기상정보 관리에 관한 연구 (A Study on the Management of the Traffic Weather Information Based on the Rain Rainfalling Sensor Information)

  • 이병현;이석호;권보라;김병식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.27-27
    • /
    • 2018
  • 최근 국지적인 집중 호우에 따른 홍수 피해와 도로에 홍수가 발생하고 있다. 또한, 기존의 도로위 강우관측 방식은 인근 강우관측소에서 관측된 강우량을 활용하며 지상 관측소 또는 AWS기상관측소의 관측 네트워크와 근접한 거리에서 강우량 편차가 크고 원하는 위치에서의 강우량과 다르며 인근관측소와의 거리가 멀어질수록 강우량의 정확도는 감소하게 된다. 국지적인 집중호우로 인한 도로위의 홍수에 따른 피해를 줄이기 위해서는 현재 운영 중인 관측망 외에 보다 상세화된 위치에서 강우량을 관측하고 이에 따라 실시간으로 강우정보를 수집하는 것이 필요하다. 따라서, 원하는 위치에서의 보다 정확한 강우량 값을 관측하기 위해서는 고해상도의 강우 관측망을 형성할 필요가 있다. 차량용 강우센서는 관측시 차량을 사용하기 때문에 고밀도 강우 관측 망을 형성하기 용이하다. 하지만 기존 강우량계와 달리 차량용 강우센서는 빛의 양을 이용하여 강우량을 변환시켜 측정되기 때문에 정확한 강우보정기술의 개발하는 것이 필수적이다. 본 연구에서는 차량용 강우센서를 활용하여 정확도 높은 강우량 관측을 위한 관계식을 개발했습니다. 관계식은 실내실제 관측되는 차량용 강우센서 정보 값에 적용하여 강우량을 생산하고 실제 강우관측 값과 비교 검실험을 통해 도출한 후 강우 관측장비 인근에서 실제 주행실험을 통해 강우관측소에서 관측된 강우량 값과 비교 및 검증을 수행하였습니다. 차량용 강우센서 정보 수집을 위해 데이터 스키마를 표준화하여 실시간으로 수집체계를 구축하였고 이는 보다 여러 위치에 있는 많은 차량에서 재해 관리를 위해 도로기상정보를 수집하고 활용할 수 있을 것입니다.

  • PDF

다중선형회귀와 기계학습 모델을 이용한 PM10 농도 예측 및 평가 (Evaluation and Predicting PM10 Concentration Using Multiple Linear Regression and Machine Learning)

  • 손상훈;김진수
    • 대한원격탐사학회지
    • /
    • 제36권6_3호
    • /
    • pp.1711-1720
    • /
    • 2020
  • 최근 급속한 산업화와 도시화로 인해 인위적으로 발생하는 미세먼지(Particulate matter, PM)는 기상 조건에 따라 이동 및 분산되면서 피부와 호흡기 등 인체에 악영향을 미친다. 본 연구는 기상인자를 multiple linear regression(MLR), support vector machine(SVM), 그리고 random forest(RF) 모델의 입력자료로 하여 서울시 PM10 농도를 예측하고, 모델 간 성능을 비교 평가하는데 그 목적을 둔다. 먼저 서울시에 소재한 39개소 대기오염측정망(air quality monitoring sites, AQMS)에서 관측된 PM10 농도 자료를 8:2 비율로 구분하여 모델 훈련과 검증 데이터셋으로 사용되었다. 또한 기상관측소(automatic weather system, AWS)에서 관측되고 있는 자료 중 9개 기상인자(평균기온, 최고기온, 최저기온, 일 강수량, 평균풍속, 최대순간풍속, 최대순간풍속풍향, 황사발생유무, 상대습도)가 모델의 입력자료로 선정되었다. 각 AQMS에서 관측된 PM10 농도와 MLR, SVM, 그리고 RF 모델에 의해 예측된 PM10 농도 간 결정계수(R2)는 각각 0.260, 0.772, 그리고 0.793이었고, RF 모델이 PM10 농도 예측에 가장 높은 성능을 나타냈다. 특히 모델 검증에 사용되는 AQMS 중 관악구와 강남대로 AQMS는 상대적으로 AWS에 가까워 SVM과 RF 모델에서 높은 정확도를 나타냈다. 종로구 AQMS는 AWS에서 비교적 멀리 떨어져 있지만, 인접한 두 AQMS 데이터가 모델 학습에 사용되었기 때문에 두 모델에서 높은 정확도를 나타냈다. 반면 용산구 AQMS는 AQMS 및 AWS에서 비교적 멀리 떨어져 있기에 두 모델의 성능이 낮게 나타냈다.