• Title/Summary/Keyword: AWS 관측강우

Search Result 99, Processing Time 0.035 seconds

가강수량을 이용한 레이더 강우발생 판단의 정확성 검토 및 향상 (Applicability of Precipitable Water for Investigation and Enhancing Radar Accuracy on Identification of Rain and No Rain)

  • 강민석;노용훈;김길도;유철상
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.465-465
    • /
    • 2015
  • 강우/무강우 정보는 재해의 관점에서는 중요성이 덜하지만 농업, 건설 등의 산업분야나 우리의 일상생활에 큰 영향을 미치는 인자이다. 본 연구에서는 레이더 자료를 이용하여 강우발생을 판단하는데 있어 그 정확성을 살펴보고, 아울러 이를 높이기 위한 방법으로 가강수량의 역할을 평가하였다. 본 연구에서는 관악산 레이더 자료, 관악산 레이더 반경 내 위치한 30개 AWS지점의 강우 자료를 분석하였다. 30개 AWS지점은 관악산 레이더 반경을 전체적으로 포괄할 수 있도록 임의로 선정하였다. 또한, 오산과 백령도 고층기상관측자료를 이용하여 산정한 가강수량을 레이더 강우발생 판단에 적용하여 정확성 개선을 검토하였다. 아울러 본 연구의 결과를 2차원 평면에 나타내어 공간적인 변화를 비교하였다.

  • PDF

인공위성 자료를 이용한 유역의 면적평균강우량 예측 (Forecasting on Areal Precipitation Estimation using Satellite Data)

  • 한건연;김광섭;최혁준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.904-907
    • /
    • 2005
  • 본 연구에서는 강우량의 실측치인 자동기상관측소(AWS) 자료와 현재의 대기상태인 인공위성(GMS-5호) 자료를 입력자료로 하여 현재부터 3시간 선행시간까지의 면적평균강우량을 예측할 수 있도록 강우예측 신경망 모형을 개발하였으며, 2002년 8월 집중호우시 남강댐 유역에 적용하였다. 신경망 모형의 학습을 위해서 $1998\~2001$$6\~9$월과 2002년 6, 7월의 강우사상과 적외선 자료가 사용되었고, 학습이 종료되면 예측기간(2002년 8월 $6\~16$일)동안의 강우예측이 수행되었다. 신경망 모형의 학습단계에서는 자료들간의 비선형 상관관계를 나타내는데 적합한 역전파 알고리즘 학습방법 중 모멘텀법을 사용하였으며, 신경망 모형의 출력값은 현재부터 3시간 후까지의 면적평균강우량을 예측할 수 있도록 구성하였다. 예측된 면적평균강우량은 실제 관측된 강우량의 패턴은 잘 따르고 있었지만 첨두치를 과소평가하는 경향이 나타났다. 본 연구에서 개발된 신경망 모형은 관측된 강우자료의 품질과 패턴이 모형의 정확성에 미치는 영향이 절대적인 기존의 신경망 모형과 차별화하여, 현재의 대기상태를 나타내는 인공위성 자료를 추가함으로써 보다 정확한 강우량 예측이 가능하도록 하였다.

  • PDF

A Comparative Study on Reservoir Level Prediction Performance Using a Deep Neural Network with ASOS, AWS, and Thiessen Network Data

  • Hye-Seung Park;Hyun-Ho Yang;Ho-Jun Lee; Jongwook Yoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권3호
    • /
    • pp.67-74
    • /
    • 2024
  • 본 논문에서는 기후 변화와 지속 가능한 수자원 관리의 중요성이 증가하는 가운데, 다양한 강우 측정 방법이 저수지 수위 예측 성능에 미치는 영향을 분석하기 위한 연구를 제시한다. 이를 위해 우리는 기상정보개방포털에서 제공하는 종관기상관측장비인 ASOS의 관측 강우, 자동기상관측장비인 AWS의 관측 강우, 그리고 면적강우비에 따라 재산정된 티센망 기반의 강우 데이터를 활용하여 신경망 기반 저수율 예측 모델에 대한 학습을 각각 수행하고, 학습된 모델의 예측 성능을 비교 및 분석하였다. 전라북도 소재 34개의 저수지에 대한 실험을 통해 각 강우량 측정방식이 저수율 예측 정확도 향상에 얼마나 기여하는지 조사하였다. 연구 결과, 티센망 기반의 강우 면적비를 활용한 저수지 강우 데이터가 가장 높은 예측 정확도를 제공한다는 것을 밝혀냈다. 이는 티센망이 주변 관측소들 사이의 정확한 거리를 고려함으로써 각 관측소가 대표하는 지역의 경계를 정의함으로써 각 지역의 실제 강우 상황을 더 정확하게 반영하기 때문이다. 이러한 발견은 정확한 지역 강우 데이터 학습이 저수율 예측에 있어 결정적인 요인 중 하나임을 시사한다. 더불어, 이 연구는 정밀한 강우 측정 및 데이터 분석의 중요성을 강조하며, 농업, 도시 계획, 홍수 관리와 같은 다양한 분야에서 예측 모델의 잠재적 응용 가능성을 제시한다.

집중호우의 시·공간적 특성과 유역특성을 고려한 강우분석 연구 (Rainfall analysis considering watershed characteristics and temporal-spatial characteristics of heavy rainfall)

  • 김민석;최지혁;문영일
    • 한국수자원학회논문집
    • /
    • 제51권8호
    • /
    • pp.739-745
    • /
    • 2018
  • 최근 집중호우의 발생빈도가 증가하고 있으며, 이를 고려한 강우분석을 실시하여야 한다. 현재 수문설계를 위한 강우분석은 한반도 조밀도 36 km인 기상청 관할 종관기상관측지점(Automated Surface Observing System, ASOS)의 시 단위 강우를 이용하고 있다. 이로 인해 같은 강우지점의 티센망에 포함되는 중소규모 유역은 동일한 확률강우량과 강우시간분포로 분석하게 됨으로 유역특성을 고려하지 못하는 문제가 발생한다. 또한, 10~20 km 범위 내에서 발생하는 집중호우의 시 공간적 변화를 고려하지 못하는 문제점이 발생한다. 따라서 본 연구에서는 종관기상관측지점에 비해 상대적으로 조밀도가 우수한 방재기상관측지점(Automatic Weather System, AWS)의 분 단위 강우자료를 이용하여 집중호우를 고려한 확률강우량을 산정하였다. 또한, 유역에 적합한 Huff의 4분위 방법 산정을 위해 Case별 시간분포 산정과 유출분석을 실시하였다. 이는 집중호우와 유역특성을 반영한 설계수문량 산정에 크게 기여할 것으로 판단된다.

한탄강 유역의 홍수량 산정을 위한 RAR 자료의 적용성 평가 (Assessment of RAR for Flood Estimation on Hantan River Basin)

  • 유명수;이재응
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.20-20
    • /
    • 2016
  • 본 연구는 레이더를 이용한 강우 추정 시 과소 추정하는 문제를 해결하기 위해 기상청에서 실시간으로 생산하고 있는 레이더 반사도를 AWS로 보정한 RAR (RADAR-AWS Rain rate) 자료의 수문 분석을 통한 적용성을 평가하는데 그 목적이 있다. 대상유역을 한탄강홍수조절댐 유역으로 선정하고 9개 소유역에 대한 시간 단위 지상 관측 자료와 RAR 자료의 유역평균 강우량을 산정 및 비교하였다. 분석 결과 미계측 유역이 80%가 넘는 1번 소유역에서 지상 관측 자료와 RAR 자료의 유역평균 강우량은 상관성이 낮게 분석되었다. 두 자료의 유역평균 강우량을 이용하여 2012년부터 2015년까지 홍수기간에 대한 저수지 모의 유입량과 관측 유입량을 비교한 결과 RAR 자료의 모의 유입량이 관측 유입량과 높은 상관성 및 정확도를 나타내었다. RAR 자료는 기존 레이더 강우의 과소 추정 문제를 보완할 수 있으며, 지상 관측이 어려운 지역에서 강우자료로 활용이 가능할 것으로 판단된다.

  • PDF

차량용 강우센서의 빅데이터를 이용한 강우관측 기술 개발

  • 이석호;이병현;김병식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.178-178
    • /
    • 2018
  • 차량용 강우센서는 강우에 따라 와이퍼의 동작 속도를 제어하기 위해 만들어졌다. 따라서 강수의 크고 적음을 대략적으로 판단하여 와이퍼의 속도단계를 결정하기 위한 장치이다. 차량용 강우 센서는 동작원리는 송수신되는 광신호에 기반한다. 일반적인 강우관측기와 달리 물 입자가 커질수록 빛의 산란이 크게 일어나는 현상을 이용한다. 산란이 크게 일어나면 강우 센서에 수광부의 광신호 값이 줄고 이는 강수가 높다는 것을 의미한다. 따라서 센서의 감지신호(Signal)와 실제강우(R)과의 관계를 이용하여 강우량으로 환산할 수 있는 R-S관계식을 개발하였다. 센서의 감지 신호(Signal)를 강우량으로 환산하기 위하여 실내 강우발생 실험 장치를 이용하여 일정 강우(R)를 증가시키고 그때 발생된 센서 감지량(S)의 관계를 수치적으로 분석하여 상관식을 만들었으며 실제 AWS, 자기우량계와 비교 분석하였다.

  • PDF

포아송 클러스터 강우 모형을 이용한 미래 시단위 이하 강우의 추계학적 모의 (Stochastic simulation of future sub-hourly rainfall using Poisson cluster rainfall model)

  • 박정하;김동균
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.284-284
    • /
    • 2023
  • 도시 침수의 발생과 규모는 도시 유역이 가지는 짧은 도달 시간으로 인하여 주로 시단위 이하의 짧은 지속시간의 강우의 극한 및 변동성에 따라 결정된다. 미래 기간에 대하여 도시 수문 시스템의 적정성을 평가하기 위해서는 기후변화에 따른 시단위 이하 강우의 특성을 살펴보아야한다. 그러나 기후변화 영향 평가 도구로 활용되는 기후 모형들은 대부분 일단위의 결과물을 제공하여 시단위 이하의 미세 규모 강우의 특성을 나타낼 수 없다. 이에 따라 본 연구에서는 기후 모형 모의 결과와 포아송 클러스터 강우 모형을 이용하여 미래 시단위 이하 강우 시계열을 모의하는 방법을 제안한다. 첫째로, 포아송 클러스터 기반 강우 생성 알고리즘과 폭풍우 재배열 알고리즘을 결합한 최신 모형을 선정하였다. 해당 모형은 광범위한 시간 규모에서 관측된 강우량의 주요 통계와 극값을 재현할 수 있는 모형이다. 그 다음 강우 모형에 적합시킬 관측 강우량 통계(평균, 분산, 공분산, 왜도, 우기 비율)를 계산하였다. 둘째, 강우 통계 간의 선형 관계를 도출하였다. 여기서는 클러스터에 있는 모든 관측소의 통계를 사용하여 회귀의 신뢰도를 높였다. 셋째, 강우 평균 조정을 위한 Change Factor는 제어(2000~2019년) 및 미래(2041~2070년) 기간의 기후 모형 자료를 사용하여 계산하였다. 넷째, 조정된 15분 강우 평균은 관측 평균에 Change Factor을 곱하여 계산하고 조정된 강우 평균과 통계 간의 관계를 사용하여 미래 강우 통계 세트를 추정하였다. 여러 통계 세트를 생성한 후 마지막으로 미래 통계에 강우 모형을 적합시켜 최종적으로 미래 시단위 이하 강우 시계열을 모의하였다. 이 방법은 CMIP6에 참여하는 기후 모델의 기후 예측 데이터를 사용하여 용산(415) 및 동래(940) AWS 관측소에 적용되었다. 두 관측소의 미래 강우 모의 결과, 시단위 이하 시간 규모에서 극값이 증가하는 추세를 보였다.

  • PDF

분 단위 강우자료의 품질 개선방안에 관한 연구 (A Study on Quality Control Method for Minutely Rainfall Data)

  • 김민석;문영일
    • 대한토목학회논문집
    • /
    • 제35권2호
    • /
    • pp.319-326
    • /
    • 2015
  • 수자원 설계 및 홍수 예 경보 등을 위한 수문분석 시, 강우자료는 필수요소이다. 현재 수문분석 시 비교적 장기간의 자료를 보유하고 있는 기상청, 국토교통부 등의 지상기상관측지점(SSS, Surface Synoptic Stations)에 시 강우자료를 이용하고 있으나, 집중호우가 빈번히 발생하는 현실정과 집중호우의 발생빈도가 증가할 것으로 예상되는 향후에는 더욱 조밀한 관측망을 구성하고 있는 방재기상관측지점(AWS, Automatic Weather Stations)의 분 단위 강우자료를 이용한 분석이 필요하다. 그러나 방재기상관측지점의 분 단위 강우자료는 자동으로 관측되고 있어, 자료품질에 대한 문제점이 매번 지적되고 있다. 본 연구에서는 서울지역을 중심으로 기상청 방재기상관측지점의 분 단위 강우자료의 품질개선 방안에 관한 연구를 실시하였다. 분 단위 강우자료의 품질관리방안은 크게 3단계로 결측치 품질관리, 이상치 품질관리 그리고 강우 보완 품질관리로 구분하여 품질관리 방안을 제시하고 분석을 수행하였다. 마지막으로 서울지점의 분 단위 강우자료와 시 단위 강우자료의 비교분석을 통해 강우 품질관리에 대한 평가를 실시하였다. 이는 향후 분 단위 강우자료를 이용한 수문분석 시, 강우자료 품질관리 방안으로 활용될 것으로 판단된다.

초단기 강우자료를 이용한 서울의 지역빈도해석 결과 (Regional frequency analysis of sub-hourly rainfall observation in Seoul)

  • 신주영;김서영;김지민;이가영;조수빈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.387-387
    • /
    • 2023
  • 2022년 중부권 폭우로 인하여 서울 강남구에서 도시홍수가 발생하였고, 많은 인명 및 경제적 지해를 유발하였다. 기후변화로 야기되는 극한 강우의 발생 패턴 및 강우 패턴의 변화가 많은 연구에서 확인되어 오고 있다. 한국의 경우 극한 강우가 국지적이고 단기간에 많은 강우량을 발생시키는 패턴으로 변화하고 있는 것으로 연구되고 있다. 특히, 도시홍수의 경우 도달시간이 매주 짧기 때문에, 초단기간에 대한 강우분석이 필요하나, 강우관측시스템의 한계로 인하여 현재까지는 초단기간에 대한 극한 강우분석이 미비한 실정이다. 1997년 이후로 기상청에서는 지속적으로 방재기상관측망(Automatic Weather System, AWS)를 설치를 하였고, 최근에 설치된 AWS의 경우 초단기간 강우량 자료를 관측할 수 있는 장비 및 시스템을 구축하고 있으나, 운영된 기간이 짧아 빈도해석에 적용하기에 한계점이 많다. 본 연구에서는 서울 지역에서 영향을 주는 40여개의 AWS의 초단기간 강우량 자료를 이용하여 서울 지역을 확률강우량을 산정하고자 한다. 짧은 관측기간으로부터 발생하는 확률강우량 추정불확실성의 저감을 위해서 지역빈도해석을 적용하였다. 지역빈도해석으로는 지수홍수법을 적용하였다. 추가적으로 서울안에서 공간적으로 확률강우량의 편차에 대하여 조사 분석하였다. 본 연구의 결과를 통하여 서울지역의 초단기간에 대한 안정적인 확률강우량의 추정이 가능할 것으로 예상되며, 추가적으로 지역별 확률강우량의 차이를 비교분석 할 수 있을 것으로 기대된다.

  • PDF

강우레이더 관측주기에 따른 강수량 오차 분석 (Analysis of Rainfall Estimation Errors on Measurement with Rainfall Radar Observation Intervals)

  • 황석환;조효섭;이건행;현명숙
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.97-97
    • /
    • 2018
  • 기후변화로 악화되는 수문기상 환경에서 돌발홍수 예보, 짧은 지속기간(5분)의 확률강우량 생산 등을 위해서는 짧은 관측 주기의 강수량 생산 고려 필요하다. 지상강수량은 1분 간격으로 생산(기상청)하고 있으나 공간적으로 보다 정밀한 레이더 강수량은 기상청 10분, 국토교통부 2.5분 간격으로 생산하고 있는 현실이다. 연속으로 누적하여 강수량을 측정하는 강수량계와는 달리 레이더의 관측방식은 순간 관측 방식으로 회전 속도 혹은 주기에 따라 강수량이 달라질 수 있다. 특히 홍수예보를 위한 강수관측이 주목적인 국토교통부 강우레이더의 경우 최근의 돌발홍수 발생 빈도가 높아짐에 따라 초단시간(2분 이내) 강수량 생산의 필요성도 대두되고 있다. 따라서 본 연구에서는 관측 주기에 따른 관측 강수량 오차(불확실도) 분석을 실시하였다. 이를 위해 샘플링 방법을 이용하여 10분까지의 레이더 관측주기에 따른 1시간 누적강수량을 산정하고, 이를 이용하여 관측 주기에 따른 지상강수량계(AWS)와의 상관계수(correlation coefficient) 및 정규화오차 정확도(1-NE)를 분석하였다. 분석결과 샘플링 주기의 증가에 따라 오차가 증가하는 것으로 나타나, 강수량 추정의 정확도가 중요한 홍수예보를 위해서는 짧은 주기의 관측(짧은 주기의 강우량 생산)이 정확도 확보 측면에서 유리할 것으로 사료된다.

  • PDF