• Title/Summary/Keyword: AUV thrusters

Search Result 13, Processing Time 0.023 seconds

The effect of vehicle velocity and drift angle on through-body AUV tunnel thruster performance

  • Saunders, Aaron;Nahon, Meyer
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.297-315
    • /
    • 2011
  • New applications of streamlined Autonomous Underwater Vehicles require an AUV capable of completing missions with both high-speed straight-line runs and slow maneuvers or station keeping tasks. At low, or zero, forward speeds, the AUV's control surfaces become ineffective. To improve an AUV's low speed maneuverability, while maintaining a low drag profile, through-body tunnel thrusters have become a popular addition to modern AUV systems. The effect of forward vehicle motion and sideslip on these types of thrusters is not well understood. In order to characterize these effects and to adapt existing tunnel thruster models to include them, an experimental system was constructed. This system includes a transverse tunnel thruster mounted in a streamlined AUV. A 6-axis load cell mounted internally was used to measure the thrust directly. The AUV was mounted in Memorial University of Newfoundland's tow tank, and several tests were run to characterize the effect of vehicle motion on the transient and steady state thruster performance. Finally, a thruster model was modified to include these effects.

Study for Tracking Control of Autonomous Underwater Vehicle (AUV의 궤적제어에 관한 연구)

  • 유휘룡;김성근;김상봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.56-63
    • /
    • 1994
  • This paper presents a design method of multivariable robust servo system for tracking control system for AUV(Autonomous Underwater Vehicle). In order to obtain the basic data for the design of the tracking control system, the control algorithm is evaluated in the view of computer simulation results. The tracking control is carried out for an AUV with 2 main thrusters, 2 side thrusters and 2 thrusters for the movement to up-down direction. The results of computer simulation show that the proposed multivariable servo system design method is an efficient method for the control performance of tracking control system of AUV under severe underwater environment.

  • PDF

Development of the Hovering AUV test-bed and field test

  • Choi, Hyeung-Sik;Cho, Sohyung;Kim, Joon-Young
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.40-47
    • /
    • 2016
  • This paper describes the design and performance of a hovering AUV constructed at KMOU (Korea Maritime and Ocean University). Before the field test, we analyzed the dynamic performance of the AUV using a simulation program made by Matlab & Simulink. Also, a PID controller was designed to control the thrusters. Using 4 thrusters (2 vertical and 2 horizontal), the AUV could be controlled using dynamic motion with 4-DOF. A simulation and field test were conducted with way-point tracking, maintaining the desired depth. To perform way-point tracking, the AUV can be fine-tuned to the desired heading angle through the LOS (Line Of Sight) method. This paper shows the results of simulation and field tests.

Design and Control of 6 D.O.F(Degrees of Freedom) Hovering AUV (6자유도 호버링 AUV의 설계 및 제어)

  • Jeong, Sang-Ki;Choi, Hyeung-Sik;Seo, Jung-Min;Tran, Ngoc Huy;Kim, Joon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.797-804
    • /
    • 2013
  • In this paper, a study of a new hovering six dof underwater robot with redundant horizontal thrusters, titled HAUV (hovering AUV), is presented. The results of study on the structure design, deployment of thrusters, and development of the developed control system of the AUV was presented. For the HAUV structure, a structure design and an analysis of the thrusting system was performed. For navigation, a sensor fusion board which can proceed various sensor signals to identify correct positions and speeds was developed and a total control system including EKF (Extended Kalman Filter) was designed. Rolling, pitching and depth control tests of the HAUV have been performed, and relatively small angle error and depth tracking error results were shown.

Development of a Hovering AUV for Underwater Explorations

  • Byun, Seung-Woo;Kim, Joon-Young
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.2
    • /
    • pp.1-9
    • /
    • 2007
  • This paper describes the design and development of a hovering AUV constructed at Cheju National University and analyses the dynamic performance of the vehicle using simulation programs. The main purpose of this AUV is to carry out fundamental tests in its station keeping, attitude control, and desired position tracking. Its configuration is similar to the general ROV appearance for underwater works and its dimensions are 0.75m*0.5m*0.5m. It has 4 thrusters of 450 watts for longitudinal/lateral/vertical propulsion and is equipped with a pressure sensor for measuring water depth and a magnetic compass for measuring heading angle. The navigation of the vehicle is controlled by an on-board Pentium III-class computer, which runs with the help of the Windows XP operating system. These give us an appropriate environment for developing various algorithms needed for developing and advancing Hovering AUV.

Implementation of Hovering AUV and Its Attitude Control Using PID Controller (PID 제어기를 이용한 호버링 AUV의 구현과 자세 제어)

  • Kim, Min-Ji;Baek, Woon-Kyung;Ha, Kyoung-Nam;Joo, Moon-Gab
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.221-226
    • /
    • 2016
  • An attitude controller for a 6-DOF hovering autonomous underwater vehicle (HAUV) is implemented. We add a vertical thruster, an underwater camera, a wireless communication device, and a DVL to the HAUV that was developed a year ago. The HAUV is composed of 5 thrusters, 2 servo-motors, and 4 apparatus parts. Two rotating thrusters control the surge, heave, and roll of the vehicle. The vertical thruster controls the pitch, and two horizontal thrusters control the sway and yaw of the vehicle. The HAUV’s movement in each direction is controlled by 6 PID controllers. Each PID controller controls the propulsive force and angle of a thruster. In a horizontal and vertical movement experiment, we showed the feasibility of the proposed controller by maintaining a given depth and heading angle of the HAUV.

Development of Hovering AUV Test-bed for Underwater Explorations and Operations

  • Byun, Seung-Woo;Choi, Hyeung-Sik;Kim, Joon-Young
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.4
    • /
    • pp.218-224
    • /
    • 2013
  • This paper describes the design and control of a hovering AUV test-bed and analyzes the dynamic performance of the vehicle using simulation programs. The main purpose of this vehicle is to carry out fundamental tests of its station keeping, attitude control, and desired position tracking. Its configuration is similar to the general appearance of an ROV for underwater operations, and its dimensions are $0.75m{\times}0.5m{\times}0.5m$. It has four 450-W thrusters for longitudinal/lateral/vertical propulsion and is equipped with a pressure sensor for measuring the water depth and a magnetic compass for measuring its heading angle. The navigation of the vehicle is controlled by an onboard Pentium III-class computer, which runs with the help of the Windows XP operating system. This provides an appropriate environment for developing the various algorithms needed for developing and advancing a hovering AUV.

Design of a Test bed and Performance Evaluation for a Hovering Type Autonomous Underwater Vehicle under Open Control Platform (개방형 제어 플랫폼 기반 호버링형 무인잠수정 테스트베드 설계 및 성능평가)

  • Choi, Jae-Weon;Ha, Tae-Kyu;Binugroho, Eko Henfri;Yu, Chang-Ho;Seo, Young-Bong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.489-497
    • /
    • 2010
  • This paper presents the design of hardware platform, which is a test bed for the navigation system and hovering type AUV (Autonomous Underwater Vehicle) under the OCP (Open Control Platform). The developed AUV test bed consists of two hulls, four thrusters, and the navigation system which uses a SBC2440II with IMU (Inertial Measurement Unit). And the SMC (Sliding Mode Control) is chosen for the diving and steering control of the AUV. This paper uses ACE/TAO RTEC (Real-Time Event Channel) as a middleware platform in order to control and communicate in the developed AUV test bed. In this paper, two computers are used and each of them is dedicated for the specific purpose, the first computer is used as the SMC module and the middleware platform for the ACE/TAO RTEC and the second computer is used for the sensor controller. We analyze the performance of the AUV test bed under the OCP.

The Estimation of the Propulsion Performance of a UUV Using Commercial Thruster (상용 추진기를 사용하는 무인잠수정의 추진성능 추정)

  • Lee, Chong-Moo;Choi, Hyun-Taek;Kim, Ki-Hun;Yeo, Dong-Jin;Lee, Pan-Mook
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.27-31
    • /
    • 2011
  • The previously developed method of estimating the propulsion performance of a UUV was applied to the high speed UUV, which is propelled by commercial thrusters. The thrusters were selected with an overdesign mentality; in other words, their capacities were excessive. At that point, the designer's concern was focused on a question regarding at what rpm the UUV could reach the design speed. Because the developed method required thrust coefficient curve data, the researchers asked for the POW data of the thrusters from the manufacturer. From the data, the researchers extracted the thrust coefficient and estimated the rpm value of design speed for the UUV. Finally, the researchers compared the estimated value and the result from a self-propulsion test using a VPMM (Vertical planar motion mechanism) test at a towing tank in MOERI.

Development of Hovering AUV 'NOAH' Test-bed for Underwater Explorations (수중탐사용 호버링 무인잠수정 NOAH의 테스트베드 개발)

  • Byun, Seung-Woo;Kim, Joon-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.414-419
    • /
    • 2010
  • This paper describes the design and performance of a hovering AUV 'NOAH' constructed at Jeju National University. We analyse the dynamic performance of NOAH using simulation program and carry out depth control test at small basin. The main purpose of NOAH is to carry out fundamental tests on its attitude control and position control. Its configuration is similar to general ROV appearance for underwater works and dimension is $0.75m{\times}0.5m{\times}0.5m$. It has 4 thrusters of 450watt for longitudinal/lateral/vertical propulsion and is equipped with a pressure sensor for measuring water depth and a magnetic compass for measuring heading angle. The navigation of the vehicle is controlled by an on-board Pentium III-class computer, which runs with the help of the Windows XP operating system. These give us an ideal environment for developing various algorithm which are needed for developing and advanced hovering AUV.