• Title/Summary/Keyword: AUC-optimization

Search Result 18, Processing Time 0.021 seconds

Aviation Convective Index for Deep Convective Area using the Global Unified Model of the Korean Meteorological Administration, Korea: Part 1. Development and Statistical Evaluation (안전한 항공기 운항을 위한 현업 전지구예보모델 기반 깊은 대류 예측 지수: Part 1. 개발 및 통계적 검증)

  • Yi-June Park;Jung-Hoon Kim
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.519-530
    • /
    • 2023
  • Deep convection can make adverse effects on safe and efficient aviation operations by causing various weather hazards such as convectively-induced turbulence, icing, lightning, and downburst. To prevent such damage, it is necessary to accurately predict spatiotemporal distribution of deep convective area near the airport and airspace. This study developed a new index, the Aviation Convective Index (ACI), for deep convection, using the operational global Unified Model of the Korea Meteorological Administration. The ACI was computed from combination of three different variables: 3-hour maximum of Convective Available Potential Energy, averaged Outgoing Longwave Radiation, and accumulative precipitation using the fuzzy logic algorithm. In this algorithm, the individual membership function was newly developed following the cumulative distribution function for each variable in Korean Peninsula. This index was validated and optimized by using the 1-yr period of radar mosaic data. According to the Receiver Operating Characteristics curve (AUC) and True Skill Score (TSS), the yearly optimized ACI (ACIYrOpt) based on the optimal weighting coefficients for 1-yr period shows a better skill than the no optimized one (ACINoOpt) with the uniform weights. In all forecast time from 6-hour to 48-hour, the AUC and TSS value of ACIYrOpt were higher than those of ACINoOpt, showing the improvement of averaged value of AUC and TSS by 1.67% and 4.20%, respectively.

A custom building deterioration model

  • Hosny, O.A.;Elhakeem, A.A.;Hegazy, T.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.685-691
    • /
    • 2011
  • Developing accurate prediction models for deterioration behavior represents a challenging but essential task in comprehensive Infrastructure Management Systems. The challenge may be a result of the lack of historical data, impact of unforeseen parameters, and/or the past repair/maintenance practices. These realities contribute heavily to the noticeable variability in deterioration behavior even among similar components. This paper introduces a novel approach to predict the deterioration of any infrastructure component. The approach is general as it fits any component, however the prediction is custom for a specific item to consider the inherent impacts of expected and unexpected parameters that affect its unique deterioration behavior.

Algorithm Improvement Through AI-Based Casting Process Parameter Optimization (AI 기반의 주조 공정 파라미터 최적화를 통한 알고리즘 개선)

  • Hyun Sim;Seo-Young Choi;Hyun-Wook Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.441-448
    • /
    • 2023
  • The quality of the casting process generates the largest source of defects in the manufacturing process, so its management is a key factor in productivity and quality evaluation. Based on the results of factor analysis, correlation analysis, and regression analysis with process data, this study aims to optimize the machine learning model to reduce the defect rate and verify the data suitability for smart factories.

Validation of guidelines for field triage of injured patients for major trauma in patients of brain and spinal injury

  • Lee, Sung Kgun;Kang, Jeong Ho;Song, Sung Wook
    • Journal of Medicine and Life Science
    • /
    • v.17 no.1
    • /
    • pp.7-15
    • /
    • 2020
  • The field triage guidelines have been widely implemented in the Korean trauma system. This study aimed to evaluate and validate whether it is reliable to use the field triage guidelines for predicting severe traumatic brain injury (TBI) and traumatic spinal injury (TSI) patients. This study retrospectively analyzed in-hospital cohort registries of all TBI and TSI patients, who visited the emergency department (ED) of the Jeju National University Hospital from 1 January 2013 to 31 December 2015. The primary outcome was defined as TBI and TSI patients with an injury severity score (ISS)>15. Secondary outcomes were defined as cases in which one or more of the following conditions: in-hospital death, ISS>15, admission to the intensive care unit, emergency surgery. We enrolled 14,889 TBI and TSI patients who visited ED, of which 7,966 (53.5%) were triage positive. The overall sensitivity, specificity and area under the curve (AUC) of the full cumulative field triage guidelines step's model (Step 1+3+4 criteria) for primary outcome were 82.8%, 47.0%, and 0.646, respectively. In the results for secondary outcomes, the specificity did not show a significant difference, but the sensitivity decreased to 66.5% and AUC to 0.568. The results of this study suggest that further optimization of the field triage guidelines is needed to identify high-risk TBI and TSI patients.

A Hybrid Soft Computing Technique for Software Fault Prediction based on Optimal Feature Extraction and Classification

  • Balaram, A.;Vasundra, S.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.348-358
    • /
    • 2022
  • Software fault prediction is a method to compute fault in the software sections using software properties which helps to evaluate the quality of software in terms of cost and effort. Recently, several software fault detection techniques have been proposed to classifying faulty or non-faulty. However, for such a person, and most studies have shown the power of predictive errors in their own databases, the performance of the software is not consistent. In this paper, we propose a hybrid soft computing technique for SFP based on optimal feature extraction and classification (HST-SFP). First, we introduce the bat induced butterfly optimization (BBO) algorithm for optimal feature selection among multiple features which compute the most optimal features and remove unnecessary features. Second, we develop a layered recurrent neural network (L-RNN) based classifier for predict the software faults based on their features which enhance the detection accuracy. Finally, the proposed HST-SFP technique has the more effectiveness in some sophisticated technical terms that outperform databases of probability of detection, accuracy, probability of false alarms, precision, ROC, F measure and AUC.

Improvement of Face Recognition Algorithm for Residential Area Surveillance System Based on Graph Convolution Network (그래프 컨벌루션 네트워크 기반 주거지역 감시시스템의 얼굴인식 알고리즘 개선)

  • Tan Heyi;Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.1-15
    • /
    • 2024
  • The construction of smart communities is a new method and important measure to ensure the security of residential areas. In order to solve the problem of low accuracy in face recognition caused by distorting facial features due to monitoring camera angles and other external factors, this paper proposes the following optimization strategies in designing a face recognition network: firstly, a global graph convolution module is designed to encode facial features as graph nodes, and a multi-scale feature enhancement residual module is designed to extract facial keypoint features in conjunction with the global graph convolution module. Secondly, after obtaining facial keypoints, they are constructed as a directed graph structure, and graph attention mechanisms are used to enhance the representation power of graph features. Finally, tensor computations are performed on the graph features of two faces, and the aggregated features are extracted and discriminated by a fully connected layer to determine whether the individuals' identities are the same. Through various experimental tests, the network designed in this paper achieves an AUC index of 85.65% for facial keypoint localization on the 300W public dataset and 88.92% on a self-built dataset. In terms of face recognition accuracy, the proposed network achieves an accuracy of 83.41% on the IBUG public dataset and 96.74% on a self-built dataset. Experimental results demonstrate that the network designed in this paper exhibits high detection and recognition accuracy for faces in surveillance videos.

Prediction of pharmacokinetics and drug-drug interaction potential using physiologically based pharmacokinetic (PBPK) modeling approach: A case study of caffeine and ciprofloxacin

  • Park, Min-Ho;Shin, Seok-Ho;Byeon, Jin-Ju;Lee, Gwan-Ho;Yu, Byung-Yong;Shin, Young G.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.107-115
    • /
    • 2017
  • Over the last decade, physiologically based pharmacokinetics (PBPK) application has been extended significantly not only to predicting preclinical/human PK but also to evaluating the drug-drug interaction (DDI) liability at the drug discovery or development stage. Herein, we describe a case study to illustrate the use of PBPK approach in predicting human PK as well as DDI using in silico, in vivo and in vitro derived parameters. This case was composed of five steps such as: simulation, verification, understanding of parameter sensitivity, optimization of the parameter and final evaluation. Caffeine and ciprofloxacin were used as tool compounds to demonstrate the "fit for purpose" application of PBPK modeling and simulation for this study. Compared to caffeine, the PBPK modeling for ciprofloxacin was challenging due to several factors including solubility, permeability, clearance and tissue distribution etc. Therefore, intensive parameter sensitivity analysis (PSA) was conducted to optimize the PBPK model for ciprofloxacin. Overall, the increase in $C_{max}$ of caffeine by ciprofloxacin was not significant. However, the increase in AUC was observed and was proportional to the administered dose of ciprofloxacin. The predicted DDI and PK results were comparable to observed clinical data published in the literatures. This approach would be helpful in identifying potential key factors that could lead to significant impact on PBPK modeling and simulation for challenging compounds.

Bankruptcy prediction using an improved bagging ensemble (개선된 배깅 앙상블을 활용한 기업부도예측)

  • Min, Sung-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.121-139
    • /
    • 2014
  • Predicting corporate failure has been an important topic in accounting and finance. The costs associated with bankruptcy are high, so the accuracy of bankruptcy prediction is greatly important for financial institutions. Lots of researchers have dealt with the topic associated with bankruptcy prediction in the past three decades. The current research attempts to use ensemble models for improving the performance of bankruptcy prediction. Ensemble classification is to combine individually trained classifiers in order to gain more accurate prediction than individual models. Ensemble techniques are shown to be very useful for improving the generalization ability of the classifier. Bagging is the most commonly used methods for constructing ensemble classifiers. In bagging, the different training data subsets are randomly drawn with replacement from the original training dataset. Base classifiers are trained on the different bootstrap samples. Instance selection is to select critical instances while deleting and removing irrelevant and harmful instances from the original set. Instance selection and bagging are quite well known in data mining. However, few studies have dealt with the integration of instance selection and bagging. This study proposes an improved bagging ensemble based on instance selection using genetic algorithms (GA) for improving the performance of SVM. GA is an efficient optimization procedure based on the theory of natural selection and evolution. GA uses the idea of survival of the fittest by progressively accepting better solutions to the problems. GA searches by maintaining a population of solutions from which better solutions are created rather than making incremental changes to a single solution to the problem. The initial solution population is generated randomly and evolves into the next generation by genetic operators such as selection, crossover and mutation. The solutions coded by strings are evaluated by the fitness function. The proposed model consists of two phases: GA based Instance Selection and Instance based Bagging. In the first phase, GA is used to select optimal instance subset that is used as input data of bagging model. In this study, the chromosome is encoded as a form of binary string for the instance subset. In this phase, the population size was set to 100 while maximum number of generations was set to 150. We set the crossover rate and mutation rate to 0.7 and 0.1 respectively. We used the prediction accuracy of model as the fitness function of GA. SVM model is trained on training data set using the selected instance subset. The prediction accuracy of SVM model over test data set is used as fitness value in order to avoid overfitting. In the second phase, we used the optimal instance subset selected in the first phase as input data of bagging model. We used SVM model as base classifier for bagging ensemble. The majority voting scheme was used as a combining method in this study. This study applies the proposed model to the bankruptcy prediction problem using a real data set from Korean companies. The research data used in this study contains 1832 externally non-audited firms which filed for bankruptcy (916 cases) and non-bankruptcy (916 cases). Financial ratios categorized as stability, profitability, growth, activity and cash flow were investigated through literature review and basic statistical methods and we selected 8 financial ratios as the final input variables. We separated the whole data into three subsets as training, test and validation data set. In this study, we compared the proposed model with several comparative models including the simple individual SVM model, the simple bagging model and the instance selection based SVM model. The McNemar tests were used to examine whether the proposed model significantly outperforms the other models. The experimental results show that the proposed model outperforms the other models.