• 제목/요약/키워드: ATP binding

검색결과 246건 처리시간 0.028초

NMR Studies on the Structure of Human Annexin I

  • Lee, Yeon-Hee;Han, Hee-yong;Oh, Jee-Young;Na, Doe-Sun;Lee, Bong-Jin
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1997년도 춘계학술대회
    • /
    • pp.86-86
    • /
    • 1997
  • Human annexin I is a member of annexin family of calcium dependent phospholipid binding proteins, which have been implicated in various physiological roles including phospholipase A$_2$ (PLA$_2$) inhibition, membrane fusion and calcium channel activity. In this work, the structure of N-terminally truncated human annexin I (Δ-annexin I) and its interactions with Ca$\^$2+/, ATP and cAMP were studied at atomic level by using $^1$H, $\^$15/N, $\^$l3/C NMR (nuclear magnetic resonance) spectroscopy. The effect of Ca$\^$2+/ binding on the structure of Δ-annexin I was investigated, and compared with that of Mg$\^$2+/ binding. The addition of Ca$\^$2+/ to Δ-annexin I caused some changes in the high field and low field regions of $^1$H NMR spectra. Whereas, upon addition of Mg$\^$2+/ to Δ-annexin I, almost no change could be observed. Also we found that the binding ratio of ATP to Δ-annexin I is 1. Because Δ-annexin I is a large protein with 35 kDa molecular weight, site-specific (carbonyl-$\^$l3/C, amide-$\^$15/N) labeling technique was used to determine the interaction sites of Δ-annexin I with Ca$\^$2+/ and ATP. Assignments of all the histidinyl carbonyl carbon resonances have been completed by using Δ-annexin I along with its specific 1,2-subdomain. The carbonyl carbon resonances originating from His52 and His246 of Δ-annexin I were significantly affected by Ca$\^$2+/ binding, and some Tyr and Phe resonances were also affected. The carbonyl carbon resonances originating from His52 is significantly affected by ATP binding, therefore His52 seems to be involved in the ATP binding site of Δ-annexin I.

  • PDF

Discrimination of JNK3 bound small molecules by saturation transfer difference NMR experiments

  • Lim, Jong-Soo;Ahn, Hee-Chul
    • 한국자기공명학회논문지
    • /
    • 제16권1호
    • /
    • pp.67-77
    • /
    • 2012
  • The small molecule binding to the c-Jun N-terminal kinase 3 (JNK3) was examined by the measurements of saturation transfer difference (STD) NMR experiments. The STD NMR experiment of ATP added to JNK3 clearly showed the binding of the nucleotide to the kinase. The STD NMR spectrum of dNTPs added to JNK3 discriminated the kinase-bound nucleotide from the unbound ones. After the five-fold addition of ATP to the dNTPs and JNK3 mixture, only signals of the cognate substrate of JNK3, ATP, were observed from the STD NMR experiment. These results signify that by the STD NMR the small molecules bound to JNK3 can be discriminated from the pool of the unbound molecules. Furthermore the binding mode of the small molecule to JNK3 can be determined by the competition experiments with ATP.

The Bacteriophage λ DNA Replication Protein P Inhibits the oriC DNA- and ATP-binding Functions of the DNA Replication Initiator Protein DnaA of Escherichia coli

  • Datta, Indrani;Sau, Subrata;Sil, Alok Kumar;Mandal, Mitai C.
    • BMB Reports
    • /
    • 제38권1호
    • /
    • pp.97-103
    • /
    • 2005
  • Under the condition of expression of $\lambda$ P protein at lethal level, the oriC DNA-binding activity is significantly affected in wild-type E. coli but not in the rpl mutant. In purified system, the $\lambda$ P protein inhibits the binding of both oriC DNA and ATP to the wild-type DnaA protein but not to the rpl DnaA protein. We conclude that the $\lambda$ P protein inhibits the binding of oriC DNA and ATP to the wild-type DnaA protein, which causes the inhibition of host DNA synthesis initiation that ultimately leads to bacterial death. A possible beneficial effect of this interaction of $\lambda$ P protein with E. coli DNA initiator protein DnaA for phage DNA replication has been proposed.

EXAMINATION OF TYR-264 FOR ATPase ACTIVE SITE IN E.coli RecA PROTEIN BY SITE-DIRECTED MUTAGENESIS

  • Kwon, Yong-Kook;Bae, Jun-Seong;Hahn, Tae-Ryong
    • Journal of Photoscience
    • /
    • 제2권1호
    • /
    • pp.27-29
    • /
    • 1995
  • Site directed mutagenesis has been introduced to determine active site(s) and molecular structure of E. coli RecA protein. Recombinant DNAs were constructed by point mutation of Tyr-264 to Phe which assumed active site for binding and hydrolysis of ATP. RecA proteins were purified from recombinants containing wild type and mutant genes and analyzed for ATPase activity assay. Result suggests that Tyr-264 is involved in ATP binding rather than ATP hydrolysis.

  • PDF

Conformational Change of Human Annexin I by the Binding of $Ca^{2+}$, ATP and cAMP

  • Lee, Bong-Jin;An, Hee-Chul;Lee, Yeon-Hee;Han, Hee-Yong;Na, Doe-Sun
    • 한국자기공명학회논문지
    • /
    • 제2권2호
    • /
    • pp.141-151
    • /
    • 1998
  • Human annexin I is a member of annexin family of calcium dependent phospholipid binding proteins, which have been implicated in various physiological roles including phospholipase A2(PLA2) inhibition, membrane fusion and calcium channel activity. In this work, the structure of N-terminally truncated human annexin I ({{{{ DELTA }}-annexin I) and its interactions with Ca2+, ATP and cAMP were studied at atomic level by using nuclear magnetic resonance (NMR) spectroscopy. The effect of Ca2+ binding on the structure of {{{{ DELTA }}-annexin I was investigated. The addition of Ca2+ to {{{{ DELTA }}-annexin I caused some changes in 13C NMR spectra. Carbonyl carbon resonances of some histidines were significantly broadened by Ca2+ binding. However, in the case of methionine, phenylalanine, and tyrosin, small changes could be observed. We found that ATP and cAMP bind {{{{ DELTA }}-annexin I, and the binding ratio of ATP to {{{{ DELTA }}-annexin I is 1. These results are well consistent with the report that cAMP and ATP interact with annexin I, and affect the calcium channels formed by annexin I. Because {{{{ DELTA }}-annexin I is a large protein with 35 kDa molecular weight, site-specific (carbonyl-13C) labeling technique was used to study the interaction sites of {{{{ DELTA }}-annexin I with Ca2+. NMR study was focused on the carbonyl carbon resonances of tyrosine, phenylalanine, methionine and histidine residues of {{{{ DELTA }}-annexin I because the number of these amino acids is small in the amino acid sequence of {{{{ DELTA }}-annexin I.

  • PDF

ATP and GTP Hydrolytic Function of N-terminally Deleted Annexin I

  • Hyun, Young-Lan;Park, Young-Min;Na, Doe-Sun
    • BMB Reports
    • /
    • 제33권4호
    • /
    • pp.289-293
    • /
    • 2000
  • Annexin I is a 37 kDa member of the annexin family of calcium-dependent phospholipid binding proteins. Annexin I plays regulatory roles in various cellular processes including cell proliferation and differentiation. Recently we found that annexin I is a heat shock protein (HSP) and displays a chaperone-like function. In this paper we investigated the function of annexin I as an ATPase using 1 to 32 amino acids deleted annexin I (${\Delta}-annexin$ I). ${\Delta}-Annexin$ I hydrolyzed ATP as determined by thin layer chromatography. The ability of ATP hydrolysis was inhibited by ADP, GTP and GDP, but not by the AMP, GMP and cAMP. In view of the ATP hydrolyzing function of HSP, the results support the function of annexin I as a HSP.

  • PDF

The stimulatory effect of CaCl2, NaCl and NH4NO3 salts on the ssDNA-binding activity of RecA depends on nucleotide cofactor and buffer pH

  • Ziemienowicz, Alicja;Rahavi, Seyed Mohammad Reza;Kovalchuk, Igor
    • BMB Reports
    • /
    • 제44권5호
    • /
    • pp.341-346
    • /
    • 2011
  • The single-stranded DNA binding activity of the Escherichia coli RecA protein is crucial for homologous recombination to occur. This and other biochemical activities of ssDNA binding proteins may be affected by various factors. In this study, we analyzed the effect of $CaCl_2$, NaCl and $NH_4NO_3$ salts in combination with the pH and nucleotide cofactor effect on the ssDNA-binding activity of RecA. The studies revealed that, in addition to the inhibitory effect, these salts exert also a stimulatory effect on RecA. These effects occur only under very strict conditions, and the presence or absence and the type of nucleotide cofactor play here a major role. It was observed that in contrast to ATP, ATP${\gamma}$S prevented the inhibitory effect of NaCl and $NH_4NO_3$, even at very high salt concentration. These results indicate that ATP${\gamma}$S most likely stabilizes the structure of RecA required for DNA binding, making it resistant to high salt concentrations.

ATP Receptor/Channels: Their Contribution to Calcium Regulation and Modulation by Neurotransmitters

  • Nakazawa, Ken
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1997년도 학술발표회
    • /
    • pp.11-12
    • /
    • 1997
  • A concept that extracellular ATP plays a role as a neurotransmitter is now widely accepted. ATP released from nerve terminals transmits both excitatory and inhibitory signals to postsynaptic neurons, muscle cells, and non-excitable cells. ATP-activated channels are effectors that convert the binding of ATP into the opening of ion channel pores in postsynaptic membrane.(omitted)

  • PDF

Protectors of Oxidative Stress Inhibit AB(1-42) Aggregation in vitro

  • Kong, Byung-Mun;Ueom, Jeong-Hoon;Kim, In-Kyung;Lim, Dong-Yeol;Kang, Jong-Min;Lee, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권12호
    • /
    • pp.1773-1777
    • /
    • 2002
  • Reactive oxygen species(ROS) have been investigated to have pivotal roles on amyloidogenecity of $\beta-amyloidpeptide(A\beta)$, the major component of senile plaques in Alzheimer's disease(AD) brain. Addition of radical scavengers is one of the on-going strategies for therapeutic treatment for AD patients. Hsp104 protein including two ATP binding sites from Saccharomyces cerevisiae, as a molecular chaperone, was known to function as a protector of ROS generation when exposed to oxidative stress in our previous study. This observation has led us to investigate Hsp104 protein as a molecular mediator of $A{\beta}$ aggregation in this study. We have developed a new way of expression for Hsp104 protein using GST-fusion tag. As we expected, formation of $A{\beta}$ aggregate was protected by wild type Hsp104 protein, but not by the two ATP-binding site mutant, based on Thioflavin-T fluorescence. Interestingly, Hsp104 protein was observed to keep $A{\beta}$ from forming aggregates independent of ATP binding. On the other hand, disaggregation of $A{\beta}$ aggregates by wild type Hsp104 was totally dependent on the presence of ATP. On the other hand, mutant Hsp104 with two ATP binding sites altered exhibited no inhibition. Another effective antioxidant, hydrazine analogs of curcumin were also effective in $A{\beta}$ fibrilization as protectors against oxidative stress. Based on these observations we conclude that Hsp104 and curcumin derivatives, as protectors of oxidative stress, inhibit $A{\beta}$ aggregation in virto and can be candidates for therapeutic approaches in cure of some neurodegenerative disease.

Bacillus anthracis Spores Influence ATP Synthase Activity in Murine Macrophages

  • Seo, Gwi-Moon;Jung, Kyoung-Hwa;Kim, Seong-Joo;Kim, Ji-Cheon;Yoon, Jang-Won;Oh, Kwang-Keun;Lee, Jung-Ho;Chai, Young-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권4호
    • /
    • pp.778-783
    • /
    • 2008
  • Anthrax is an infectious disease caused by toxigenic strains of the Gram-positive bacterium Bacillus anthracis. To identify the mitochondrial proteins that are expressed differently in murine macrophages infected with spores of B. anthracis Sterne, proteomic and MALDI-TOF/MS analyses of uninfected and infected macrophages were conducted. As a result, 13 mitochondrial proteins with different expression patterns were discovered in the infected murine macrophages, and some were identified as ATP5b, NIAP-5, ras-related GTP binding protein B isoform CRAa, along with several unnamed proteins. Among these proteins, ATP5b is related to energy production and cytoskeletal rearrangement, whereas NIAP-5 causes apoptosis of host cells due to binding with caspase-9. Therefore, this paper focused on ATP5b, which was found to be down regulated following infection. The downregulated ATP5b also reduced ATP production in the murine macrophages infected with B. anthracis spores. Consequently, this study represents the first mitochondrial proteome analysis of infected macrophages.