• 제목/요약/키워드: ATG5

검색결과 121건 처리시간 0.033초

Swapping of interaction partners with ATG5 for autophagosome maturation

  • Kim, Jun Hoe;Song, Hyun Kyu
    • BMB Reports
    • /
    • 제48권3호
    • /
    • pp.129-130
    • /
    • 2015
  • Autophagy is a tightly regulated lysosome-mediated catabolic process in eukaryotes that maintains cellular homeostasis. A distinguishable feature of autophagy is the formation of double- membrane structures, autophagosome, which envelopes the intracellular cargoes and finally degrades them by fusion with lysosomes. So far, many structures of Atg proteins working on the autophagosome formation have been reported, however those involved in autophagosome maturation, a fusion with lysosome, are relatively unknown. One of the molecules in autophagosome maturation, TECPR1, has been identified and recently, structural studies on both ATG5-TECPR1 and ATG5-ATG16L1 complexes revealed that TECPR1 and ATG16L1 share the same binding site on ATG5. These results, in combination with supporting biochemical and cellular biological data, provide an insight into a model for swapping ATG5 partners for autophagosome maturation.

Biological Roles of Alternative Autophagy

  • Shimizu, Shigeomi
    • Molecules and Cells
    • /
    • 제41권1호
    • /
    • pp.50-54
    • /
    • 2018
  • Atg5 and Atg7 have long been considered as essential molecules for autophagy. However, we found that cells lacking these molecules still form autophagic vacuoles and perform autophagic protein degradation when subjected to certain stressors. During this unconventional autophagy pathway, autophagosomes appeared to be generated in a Rab9-dependent manner by the fusion of vesicles derived from the trans-Golgi and late endosomes. Therefore, mammalian autophagy can occur via at least two different pathways; the Atg5/Atg7-dependent conventional pathway and an Atg5/Atg7-independent alternative pathway.

ATG5 knockout promotes paclitaxel sensitivity in drug-resistant cells via induction of necrotic cell death

  • Hwang, Sung-Hee;Yeom, Hojin;Lee, Michael
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권3호
    • /
    • pp.233-240
    • /
    • 2020
  • Autophagy regulators are often effective as potential cancer therapeutic agents. Here, we investigated paclitaxel sensitivity in cells with knockout (KO) of ATG5 gene. The ATG5 KO in multidrug resistant v-Ha-ras-transformed NIH 3T3 cells (Ras-NIH 3T3/Mdr) was generated using the CRISPR/Cas9 technology. The qPCR and LC3 immunoblot confirmed knockout of the gene and protein of ATG5, respectively. The ATG5 KO restored the sensitivity of Ras-NIH 3T3/Mdr cells to paclitaxel. Interestingly, ATG5 overexpression restored autophagy function in ATG5 KO cells, but failed to rescue paclitaxel resistance. These results raise the possibility that low level of resistance to paclitaxel in ATG5 KO cells may be related to other roles of ATG5 independent of its function in autophagy. The ATG5 KO significantly induced a G2/M arrest in cell cycle progression. Additionally, ATG5 KO caused necrosis of a high proportion of cells after paclitaxel treatment. These data suggest that the difference in sensitivity to paclitaxel between ATG5 KO and their parental MDR cells may result from the disparity in the proportions of necrotic cells in both populations. Thus, our results demonstrate that the ATG5 KO in paclitaxel resistant cells leads to a marked G2/M arrest and sensitizes cells to paclitaxel-induced necrosis.

Identification of Atg8 Isoform in Encysting Acanthamoeba

  • Moon, Eun-Kyung;Hong, Yeonchul;Chung, Dong-Il;Kong, Hyun-Hee
    • Parasites, Hosts and Diseases
    • /
    • 제51권5호
    • /
    • pp.497-502
    • /
    • 2013
  • Autophagy-related protein 8 (Atg8) is an essential component of autophagy formation and encystment of cystforming parasites, and some protozoa, such as, Acanthamoeba, Entamoeba, and Dictyostelium, have been reported to possess a type of Atg8. In this study, an isoform of Atg8 was identified and characterized in Acanthamoeba castellanii (AcAtg8b). AcAtg8b protein was found to encode 132 amino acids and to be longer than AcAtg8 protein, which encoded 117 amino acids. Real-time PCR analysis showed high expression levels of AcAtg8b and AcAtg8 during encystation. Fluorescence microscopy demonstrated that AcAtg8b is involved in the formation of the autophagosomal membrane. Chemically synthesized siRNA against AcAtg8b reduced the encystation efficiency of Acanthamoeba, confirming that AcAtg8b, like AcAtg8, is an essential component of cyst formation in Acanthamoeba. Our findings suggest that Acanthamoeba has doubled the number of Atg8 gene copies to ensure the successful encystation for survival when 1 copy is lost. These 2 types of Atg8 identified in Acanthamoeba provide important information regarding autophagy formation, encystation mechanism, and survival of primitive, cyst-forming protozoan parasites.

착상전 난자 자식작용의 특성규명 (Characterization of Embryo-specific Autophagy during Preimplantation)

  • 이재달
    • 한국산학기술학회논문지
    • /
    • 제12권8호
    • /
    • pp.3541-3546
    • /
    • 2011
  • 자식작용은 난자 세포질의 단백질 고분자 물질과 세포 소기관 분해를 위해서 세포질 리소좀 통로에 유전적으로 작용하고 있으며 ATP합성과 단백질 재활용에 관여하고 있다. 이러한 자식작용은 난자 발달 과정에서 매우 중요하지만 세포질 내 자식작용의 동적 발달 과정의 근원적인 기전은 잘 알려지지 않고 있다. 따라서 본 연구에서는 초기 난자 발달 과정의 자식작용을 이해하기 위해서 쥐 난자 체외 성숙 과정에서 자식작용과 관련된 유전자들의 유전적 발현 수준을 분석하였다. Real Time RT-PCR 기법을 이용하여 유전자 Atg2a, Atg3, Atg4b, Atg5, Atg6, Atg7, Atg9a, 그리고 Wipi3 같은 모계에서 유전된 ATGs 군들의 유전자들은 수정난 유전체 활성화(ZGA) 이전 단계인 1세포기에서 높게 발현되었고, 그 후 이들 유전자들의 발현은 배반포 단계와 2세포기 4세포기 단계에서는 감소함을 알 수 있었다. Dram과 Atg9b 유전자들은 배반포와 1세포기 단계에서 발현됨으로서 모계 유전자이면서 ZGA에 의해서 발현되는 유전자임을 알 수 있었다. 한편 UIKI의 유전자 발현은 착상 전 단계에서 일정하게 나타남을 알 수 있었다. 하지만 Atg4d 유전자의 경우 4세포기에서부터 배 반포 단계까지 높게 나타남을 알 수 있었다. 이러한 결과로부터 생쥐 난자 발달 과정에서 자식작용과 관련된 유전자들은 초기 난자 발달과정에서 중요한 역할 과정임을 알 수 있었다.

The Roles of the SNARE Protein Sed5 in Autophagy in Saccharomyces cerevisiae

  • Zou, Shenshen;Sun, Dan;Liang, Yongheng
    • Molecules and Cells
    • /
    • 제40권9호
    • /
    • pp.643-654
    • /
    • 2017
  • Autophagy is a degradation pathway in eukaryotic cells in which aging proteins and organelles are sequestered into double-membrane vesicles, termed autophagosomes, which fuse with vacuoles to hydrolyze cargo. The key step in autophagy is the formation of autophagosomes, which requires different kinds of vesicles, including COPII vesicles and Atg9-containing vesicles, to transport lipid double-membranes to the phagophore assembly site (PAS). In yeast, the cis-Golgi localized t-SNARE protein Sed5 plays a role in endoplasmic reticulum (ER)-Golgi and intra-Golgi vesicular transport. We report that during autophagy, sed5-1 mutant cells could not properly transport Atg8 to the PAS, resulting in multiple Atg8 dots being dispersed into the cytoplasm. Some dots were trapped in the Golgi apparatus. Sed5 regulates the anterograde trafficking of Atg9-containing vesicles to the PAS by participating in the localization of Atg23 and Atg27 to the Golgi apparatus. Furthermore, we found that overexpression of SFT1 or SFT2 (suppressor of sed5 ts) rescued the autophagy defects in sed5-1 mutant cells. Our data suggest that Sed5 plays a novel role in autophagy, by regulating the formation of Atg9-containing vesicles in the Golgi apparatus, and the genetic interaction between Sft1/2 and Sed5 is essential for autophagy.

A Revised Assay for Monitoring Autophagic Flux in Arabidopsis thaliana Reveals Involvement of AUTOPHAGY-RELATED9 in Autophagy

  • Shin, Kwang Deok;Lee, Han Nim;Chung, Taijoon
    • Molecules and Cells
    • /
    • 제37권5호
    • /
    • pp.399-405
    • /
    • 2014
  • Autophagy targets cytoplasmic cargo to a lytic compartment for degradation. Autophagy-related (Atg) proteins, including the transmembrane protein Atg9, are involved in different steps of autophagy in yeast and mammalian cells. Functional classification of core Atg proteins in plants has not been clearly confirmed, partly because of the limited availability of reliable assays for monitoring autophagic flux. By using proUBQ10-GFP-ATG8a as an autophagic marker, we showed that autophagic flux is reduced but not completely compromised in Arabidopsis thaliana atg9 mutants. In contrast, we confirmed full inhibition of auto-phagic flux in atg7 and that the difference in autophagy was consistent with the differences in mutant phenotypes such as hypersensitivity to nutrient stress and selective autophagy. Autophagic flux is also reduced by an inhibitor of phosphatidylinositol kinase. Our data indicated that atg9 is phenotypically distinct from atg7 and atg2 in Arabidopsis, and we proposed that ATG9 and phosphatidylinositol kinase activity contribute to efficient autophagy in Arabidopsis.

Novel miR-1958 Promotes Mycobacterium tuberculosis Survival in RAW264.7 Cells by Inhibiting Autophagy Via Atg5

  • Ding, Shuqin;Qu, Yuliang;Yang, Shaoqi;Zhao, Ya'e;Xu, Guangxian
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권6호
    • /
    • pp.989-998
    • /
    • 2019
  • Autophagy is crucial for immune defense against Mycobacterium tuberculosis (Mtb) infection. Mtb can evade host immune attack and survival within macrophages by manipulating the autophagic process. MicroRNAs (miRNAs) are small, non-coding RNAs that are involved in regulating vital genes during Mtb infection. The precise role of miRNAs in autophagy with the exits of Mtb remains largely unknown. In this study, we found miR-1958, a new miRNA that could regulate autophagy by interacting with 3'UTR of autophagy-related gene 5 (Atg5). In addition, Mtb infection triggered miR-1958 expression in RAW264.7 cells. What's more, miR-1958 overexpression blocked autophagic flux by impairing the fusion of autophagosomes and lysosomes. Overexpression of miR-1958 reduced Atg5 expression and LC3 puncta while inhibition of miR-1958 brought an increase of Atg5 and LC3 puncta; the opposite results were observed in detection of p62. The survival of Mtb in RAW264.7 cells transfected with mimic of miR-1958 was enhanced. Taken together, our research demonstrated that a novel miR-1958 could inhibit autophagy by interacting with Atg5 and favored intracellular Mtb survival in RAW264.7 cells.

ATG5 Expression Induced by MDMA (Ecstasy), Interferes with Neuronal Differentiation of Neuroblastoma Cells

  • Chae, Myounghee;Rhee, Gyu-Seek;Jang, Ik-Soon;Kim, Kwangsoo;Lee, Ji-Hae;Lee, Seung-Yeul;Kim, Minjung;Yang, Junyoung;Park, Junsoo;Lee, Seung-Hoon
    • Molecules and Cells
    • /
    • 제27권5호
    • /
    • pp.571-575
    • /
    • 2009
  • The amphetamine derivative 3, 4-methylenedioxymethamphetamine (MDMA) has become a popular recreational drug, and has also been shown to cause serotonergic neurotoxicity. This report shows that MDMA impairs brain development in a whole mouse embryo culture. The results of quantitative real-time PCR analysis showed that autophagy-related protein 5 (Atg5) expression is elevated in mouse embryo and neuroblastoma cells after MDMA treatment. This elevated Atg5 expression interferes with the neuronal differentiation of neuroblastoma cells such as SH-SY5Y and PC12 cells. Thus, our results suggest that the use of MDMA during pregnancy may impair neuronal development via an induction of Atg5 expression.

Vitrification, in vitro fertilization, and development of Atg7 deficient mouse oocytes

  • Bang, Soyoung;Lee, Geun-Kyung;Shin, Hyejin;Suh, Chang Suk;Lim, Hyunjung Jade
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제43권1호
    • /
    • pp.9-14
    • /
    • 2016
  • Objective: Autophagy contributes to the clearance and recycling of macromolecules and organelles in response to stress. We previously reported that vitrified mouse oocytes show acute increases in autophagy during warming. Herein, we investigate the potential role of Atg7 in oocyte vitrification by using an oocyte-specific deletion model of the Atg7 gene, a crucial upstream gene in the autophagic pathway. Methods: Oocyte-specific Atg7 deficient mice were generated by crossing Atg7 floxed mice and Zp3-Cre transgenic mice. The oocytes were vitrified-warmed and then subjected to in vitro fertilization and development. The rates of survival, fertilization, and development were assessed in the Atg7 deficient oocytes in comparison with the wildtype oocytes. Light chain 3 (LC3) immunofluorescence staining was performed to determine whether this method effectively evaluates the autophagy status of oocytes. Results: The survival rate of vitrified-warmed $Atg7^{f/f}$;Zp3-Cre ($Atg7^{d/d}$) metaphase II (MII) oocytes was not significantly different from that of the wildtype ($Atg7^{f/f}$) oocytes. Fertilization and development in the $Atg7^{d/d}$ oocytes were significantly lower than the $Atg7^{f/f}$ oocytes, comparable to the $Atg5^{d/d}$ oocytes previously described. Notably, the developmental rate improved slightly in vitrified-warmed $Atg7^{d/d}$ MII oocytes when compared to fresh $Atg7^{d/d}$ oocytes. LC3 immunofluorescence staining showed that this method can be reliably used to assess autophagic activation in oocytes. Conclusion: We confirmed that the LC3-positive signal is nearly absent in $Atg7^{d/d}$ oocytes. While autophagy is induced during the warming process after vitrification of MII oocytes, the Atg7 gene is not essential for survival of vitrified-warmed oocytes. Thus, induction of autophagy during warming of vitrified MII oocytes seems to be a natural response to manage cold or other cellular stresses.