DOI QR코드

DOI QR Code

A Revised Assay for Monitoring Autophagic Flux in Arabidopsis thaliana Reveals Involvement of AUTOPHAGY-RELATED9 in Autophagy

  • Shin, Kwang Deok (Department of Biological Sciences, Pusan National University) ;
  • Lee, Han Nim (Department of Biological Sciences, Pusan National University) ;
  • Chung, Taijoon (Department of Biological Sciences, Pusan National University)
  • Received : 2014.02.25
  • Accepted : 2014.04.08
  • Published : 2014.05.31

Abstract

Autophagy targets cytoplasmic cargo to a lytic compartment for degradation. Autophagy-related (Atg) proteins, including the transmembrane protein Atg9, are involved in different steps of autophagy in yeast and mammalian cells. Functional classification of core Atg proteins in plants has not been clearly confirmed, partly because of the limited availability of reliable assays for monitoring autophagic flux. By using proUBQ10-GFP-ATG8a as an autophagic marker, we showed that autophagic flux is reduced but not completely compromised in Arabidopsis thaliana atg9 mutants. In contrast, we confirmed full inhibition of auto-phagic flux in atg7 and that the difference in autophagy was consistent with the differences in mutant phenotypes such as hypersensitivity to nutrient stress and selective autophagy. Autophagic flux is also reduced by an inhibitor of phosphatidylinositol kinase. Our data indicated that atg9 is phenotypically distinct from atg7 and atg2 in Arabidopsis, and we proposed that ATG9 and phosphatidylinositol kinase activity contribute to efficient autophagy in Arabidopsis.

Keywords

References

  1. Chung, T., Suttangkakul, A., and Vierstra, R.D. (2009). The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated by development and nutrient availability. Plant Physiol. 149, 220-234. https://doi.org/10.1104/pp.108.126714
  2. Chung, T., Phillips, A.R., and Vierstra, R.D. (2010). ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A AND ATG12B loci. Plant J. 62, 483-493. https://doi.org/10.1111/j.1365-313X.2010.04166.x
  3. Daxinger, L., Hunter, B., Sheikh, M., Jauvion, V., Gasciolli, V., Vaucheret, H., Matzke, M., and Furner, I. (2008). Unexpected silencing effects from T-DNA tags in Arabidopsis. Trends Plant Sci. 13, 4-6. https://doi.org/10.1016/j.tplants.2007.10.007
  4. Doelling, J.H., Walker, J.M., Friedman, E.M., Thompson, A.R., and Vierstra, R.D. (2002). The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J. Biol. Chem. 277, 33105-33114. https://doi.org/10.1074/jbc.M204630200
  5. Ettinger, W.F., and Harada, J.J. (1990). Translational or posttranslational processes affect differentially the accumulation of isocitrate lyase and malate synthase proteins and enzyme activities in embryos and seedlings of Brassica napus. Arch. Biochem. Biophys. 281, 139-143. https://doi.org/10.1016/0003-9861(90)90423-V
  6. Farmer, L.M., Rinaldi, M.A., Young, P.G., Danan, C.H., Burkhart, S.E., and Bartel, B. (2013). Disrupting autophagy restores peroxisome function to an Arabidopsis lon2 mutant and reveals a role for the LON2 protease in peroxisomal matrix protein degradation. Plant Cell 25, 4085-4100. https://doi.org/10.1105/tpc.113.113407
  7. Hanaoka, H., Noda, T., Shirano, Y., Kato, T., Hayashi, H., Shibata, D., Tabata, S., and Ohsumi, Y. (2002). Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol. 129, 1181-1193. https://doi.org/10.1104/pp.011024
  8. Hofius, D., Schultz-Larsen, T., Joensen, J., Tsitsigiannis, D.I., Petersen, N.H., Mattsson, O., Jorgensen, L.B., Jones, J.D., Mundy, J., and Petersen, M. (2009). Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 137, 773-783. https://doi.org/10.1016/j.cell.2009.02.036
  9. Inoue, Y., Suzuki, T., Hattori, M., Yoshimoto, K., Ohsumi, Y., and Moriyasu, Y. (2006). AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. Plant Cell Physiol. 47, 1641-1652. https://doi.org/10.1093/pcp/pcl031
  10. Kim, S.H., Kwon, C., Lee, J.H., and Chung, T. (2012). Genes for plant autophagy: functions and interactions. Mol. Cells 34, 413-423. https://doi.org/10.1007/s10059-012-0098-y
  11. Kim, J., Lee, H., Lee, H.N., Kim, S.H., Shin, K.D., and Chung, T. (2013). Autophagy-related proteins are required for degradation of peroxisomes in Arabidopsis hypocotyls during seedling growth. Plant Cell 25, 4956-4966. https://doi.org/10.1105/tpc.113.117960
  12. Klionsky, D.J., Abdalla, F.C., Abeliovich, H., Abraham, R.T., Acevedo-Arozena, A., Adeli, K., Agholme, L., Agnello, M., Agostinis, P., Aguirre-Ghiso, J.A., et al. (2012). Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445-544. https://doi.org/10.4161/auto.19496
  13. Li, F., and Vierstra, R.D. (2012). Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci. 17, 526-537. https://doi.org/10.1016/j.tplants.2012.05.006
  14. Li, F., Chung, T., and and Vierstra, R.D. (2014). AUTOPHAGYRELATED (ATG)11 plays a critical role in general autophagy and senescence-induced mitophagy in Arabidopsis. Plant Cell 26, 788-807. https://doi.org/10.1105/tpc.113.120014
  15. Liu, Y., Schiff, M., Czymmek, K., Talloczy, Z., Levine, B., and Dinesh- Kumar, S.P. (2005). Autophagy regulates programmed cell death during the plant innate immune response. Cell 121, 567-577. https://doi.org/10.1016/j.cell.2005.03.007
  16. Matsuoka, K., Bassham, D.C., Raikhel, N.V., and Nakamura, K. (1995). Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. J. Cell Biol. 130, 1307-1318. https://doi.org/10.1083/jcb.130.6.1307
  17. Matsuoka, K., Higuchi, T., Maeshima, M., and Nakamura, K. (1997). A vacuolar-type $H^+$-ATPase in a nonvacuolar organelle is required for the sorting of soluble vacuolar protein precursors in tobacco cells. Plant Cell 9, 533-546.
  18. Mizushima, N., Yoshimori, T., and Levine, B. (2010). Methods in mammalian autophagy research. Cell 140, 313-326. https://doi.org/10.1016/j.cell.2010.01.028
  19. Noda, T., Kim, J., Huang, W.P., Baba, M., Tokunaga, C., Ohsumi, Y., and Klionsky, D.J. (2000). Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J. Cell Biol. 148, 465-480. https://doi.org/10.1083/jcb.148.3.465
  20. Orsi, A., Razi, M., Dooley, H.C., Robinson, D., Weston, A.E., Collinson, L.M., and Tooze, S.A. (2012). Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol. Biol. Cell 23, 1860-1873. https://doi.org/10.1091/mbc.E11-09-0746
  21. Phillips, A.R., Suttangkakul, A., and Vierstra, R.D. (2008). The ATG12-conjugating enzyme ATG10 Is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics 178, 1339-1353. https://doi.org/10.1534/genetics.107.086199
  22. Suttangkakul, A., Li, F., Chung, T., and Vierstra, R.D. (2011). The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. Plant Cell 23, 3761-3779. https://doi.org/10.1105/tpc.111.090993
  23. Suzuki, K., Akioka, M., Kondo-Kakuta, C., Yamamoto, H., and Ohsumi, Y. (2013). Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. J. Cell Sci. 126, 2534-2544. https://doi.org/10.1242/jcs.122960
  24. Tamura, K., Shimada, T., Ono, E., Tanaka, Y., Nagatani, A., Higashi, S.I., Watanabe, M., Nishimura, M., and Hara-Nishimura, I. (2003). Why green fluorescent fusion proteins have not been observed in the vacuoles of higher plants. Plant J. 35, 545-555. https://doi.org/10.1046/j.1365-313X.2003.01822.x
  25. Thompson, A.R., Doelling, J.H., Suttangkakul, A., and Vierstra, R.D. (2005). Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol. 138, 2097-2110. https://doi.org/10.1104/pp.105.060673
  26. Wang, C.W., Kim, J., Huang, W.P., Abeliovich, H., Stromhaug, P.E., Dunn, W.A., Jr, and Klionsky, D.J. (2001). Apg2 is a novel protein required for the cytoplasm to vacuole targeting, autophagy, and pexophagy pathways. J. Biol. Chem. 276, 30442-30451. https://doi.org/10.1074/jbc.M102342200
  27. Wang, Y., Nishimura, M.T., Zhao, T., and Tang, D. (2011). ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant J. 68, 74-87. https://doi.org/10.1111/j.1365-313X.2011.04669.x
  28. Xiong, Y., Contento, A.L., and Bassham, D.C. (2005). AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J. 42, 535-546. https://doi.org/10.1111/j.1365-313X.2005.02397.x
  29. Yang, Z., and Klionsky, D.J. (2010). Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22, 124-131. https://doi.org/10.1016/j.ceb.2009.11.014
  30. Yoshimoto, K., Hanaoka, H., Sato, S., Kato, T., Tabata, S., Noda, T., and Ohsumi, Y. (2004). Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16, 2967-2983. https://doi.org/10.1105/tpc.104.025395
  31. Zavodszky, E., Vicinanza, M., and Rubinsztein, D.C. (2013). Biology and trafficking of ATG9 and ATG16L1, two proteins that regulate autophagosome formation. FEBS Lett. 587, 1988-1996. https://doi.org/10.1016/j.febslet.2013.04.025
  32. Zhang, Y., Li, S., Zhou, L.Z., Fox, E., Pao, J., Sun, W., Zhou, C., and McCormick, S. (2011). Overexpression of Arabidopsis thaliana PTEN caused accumulation of autophagic bodies in pollen tubes by disrupting phosphatidylinositol 3-phosphate dynamics. Plant J. 68, 1081-1092. https://doi.org/10.1111/j.1365-313X.2011.04761.x

Cited by

  1. Evidence for autophagy-dependent pathways of rRNA turnover inArabidopsis vol.11, pp.12, 2015, https://doi.org/10.1080/15548627.2015.1106664
  2. Physiological Functions of the COPI Complex in Higher Plants vol.38, pp.10, 2015, https://doi.org/10.14348/molcells.2015.0115
  3. Autophagy Is Rapidly Induced by Salt Stress and Is Required for Salt Tolerance in Arabidopsis vol.8, 2017, https://doi.org/10.3389/fpls.2017.01459
  4. ATG9 regulates autophagosome progression from the endoplasmic reticulum inArabidopsis vol.114, pp.3, 2017, https://doi.org/10.1073/pnas.1616299114
  5. Origin of the Autophagosomal Membrane in Plants vol.7, 2016, https://doi.org/10.3389/fpls.2016.01655
  6. Degradation of cytosolic ribosomes by autophagy-related pathways vol.262, 2017, https://doi.org/10.1016/j.plantsci.2017.05.008
  7. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) vol.12, pp.1, 2016, https://doi.org/10.1080/15548627.2015.1100356
  8. Methods for analysis of autophagy in plants vol.75, 2015, https://doi.org/10.1016/j.ymeth.2014.09.003
  9. Molecular mechanisms of autophagy in plants: Role of ATG8 proteins in formation and functioning of autophagosomes vol.81, pp.4, 2016, https://doi.org/10.1134/S0006297916040052
  10. Autophagic flux analysis of Arabidopsis seedlings exposed to salt stress vol.60, pp.2, 2017, https://doi.org/10.1007/s12374-016-0448-y
  11. Endocytosis of AtRGS1 Is Regulated by the Autophagy Pathway after D-Glucose Stimulation vol.8, 2017, https://doi.org/10.3389/fpls.2017.01229
  12. Lipids in membrane dynamics during autophagy in plants vol.69, pp.6, 2017, https://doi.org/10.1093/jxb/erx392
  13. Multiscale and Multimodal Approaches to Study Autophagy in Model Plants vol.7, pp.1, 2018, https://doi.org/10.3390/cells7010005
  14. Autophagy-related (ATG) 11, ATG9 and the phosphatidylinositol 3-kinase control ATG2-mediated formation of autophagosomes in Arabidopsis vol.37, pp.4, 2018, https://doi.org/10.1007/s00299-018-2258-9
  15. Impacts of autophagy on nitrogen use efficiency in plants vol.64, pp.1, 2018, https://doi.org/10.1080/00380768.2017.1412239
  16. genes pp.1554-8635, 2019, https://doi.org/10.1080/15548627.2019.1569915
  17. Autophagy is activated and involved in cell death with participation of cathepsins during stress-induced microspore embryogenesis in barley vol.69, pp.6, 2014, https://doi.org/10.1093/jxb/erx455
  18. Correlation of Autophagosome Formation with Degradation and Endocytosis Arabidopsis Regulator of G-Protein Signaling (RGS1) through ATG8a vol.20, pp.17, 2019, https://doi.org/10.3390/ijms20174190
  19. Actin filaments are dispensable for bulk autophagy in plants vol.15, pp.12, 2014, https://doi.org/10.1080/15548627.2019.1596496
  20. Identification of transcription factors that regulate ATG8 expression and autophagy in Arabidopsis vol.16, pp.1, 2014, https://doi.org/10.1080/15548627.2019.1598753
  21. TOR mediates the autophagy response to altered nucleotide homeostasis in an RNase mutant vol.71, pp.22, 2014, https://doi.org/10.1093/jxb/eraa410
  22. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1 vol.17, pp.1, 2014, https://doi.org/10.1080/15548627.2020.1797280
  23. Autophagy is required for lipid homeostasis during dark-induced senescence vol.185, pp.4, 2014, https://doi.org/10.1093/plphys/kiaa120
  24. How Lipids Contribute to Autophagosome Biogenesis, a Critical Process in Plant Responses to Stresses vol.10, pp.6, 2014, https://doi.org/10.3390/cells10061272