• 제목/요약/Keyword: ATF

검색결과 204건 처리시간 0.038초

Naringenin-Mediated ATF3 Expression Contributes to Apoptosis in Human Colon Cancer

  • Song, Hun Min;Park, Gwang Hun;Eo, Hyun Ji;Jeong, Jin Boo
    • Biomolecules & Therapeutics
    • /
    • 제24권2호
    • /
    • pp.140-146
    • /
    • 2016
  • Naringenin (NAR) as one of the flavonoids observed in grapefruit has been reported to exhibit an anti-cancer activity. Activating transcription factor 3 (ATF3) is associated with apoptosis in human colon cancer cells. This study was performed to investigate the molecular mechanism by which NAR stimulates ATF3 expression and apoptosis in human colon cancer cells. NAR reduced the cell viability and induced an apoptosis in human colon cancer cells. ATF3 overexpression increased NAR-mediated cleaved PARP, while ATF3 knockdown attenuated the cleavage of PARP by NAR. NAR increased ATF3 expression in both protein and mRNA level, and increased the luciferase activity of ATF3 promoter in a dose-dependent manner. The responsible region for ATF3 transcriptional activation by NAR is located between -317 and -148 of ATF3 promoter. p38 inhibition blocked NAR-mediated ATF3 expression, its promoter activation and apoptosis. The results suggest that NAR induces apoptosis through p38-dependent ATF3 activation in human colon cancer cells.

ATF2 전사인자의 발현과 AP-1 전사인자인 BATF, c-Fos, c-Jun과의 이량체 형성 (Expression of ATE2 Transcription Factor and the Interaction with AP-1 Factors : BATF, c-Fos, c-Jun)

  • 장혜영;김재호
    • 생명과학회지
    • /
    • 제15권6호
    • /
    • pp.928-934
    • /
    • 2005
  • ATF2는 c-Fos와 c-Jun과 같은 전사인자이며 이들은 루신지퍼 단백질이다. 루신지퍼 단백질은 동형이합체 혹은 이형이합체를 형성하며 promoter 영역에 결합하여 전사조절에 중요한 역할을 한다. 세포의 전사인자 ATF2는 ATF/CRE site에 결합하며 특히 선택적인 interfamily 이형이량체를 형성함으로써 전사 조절에 있어서 다양한 메카니즘을 제공할 수 있다. 본 연구에서는 ATF2 cDNA를 6xHis를 가진 expression vector에 subcloning하여 E.cnli BL2l에서 발현시켰다. 6xHis tag은 nickel-chelating chromatography를 가능하게 하였다 발현된 ATF2는 In vitro binding pull-down assay에서 동형이합체를 이를 뿐만 아니라 AP-1 그룹의 인자들과 선택적인 이형이합체를 형성함을 보여 주었다. BATF와는 강하게 결합하였으며 c-Jun과도 안정된 이합체를 형성하였다. 그러나 c-Fos와는 이합체를 형성하지 않으므로서 AP-1그룹 내에서도 이합체 형성이 선택적으로 이루어짐을 알 수 있다.

ATF3 Activates Stat3 Phosphorylation through Inhibition of p53 Expression in Skin Cancer Cells

  • Hao, Zhen-Feng;Ao, Jun-Hong;Zhang, Jie;Su, You-Ming;Yang, Rong-Ya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권12호
    • /
    • pp.7439-7444
    • /
    • 2013
  • Aim: ATF3, a member of the ATF/CREB family of transcription factors, has been found to be selectively induced by calcineurin/NFAT inhibition and to enhance keratinocyte tumor formation, although the precise role of ATF3 in human skin cancer and possible mechanisms remain unknown. Methods: In this study, clinical analysis of 30 skin cancer patients and 30 normal donors revealed that ATF3 was accumulated in skin cancer tissues. Functional assays demonstrated that ATF3 significantly promoted skin cancer cell proliferation. Results: Mechanically, ATF3 activated Stat3 phosphorylation in skin cancer cell through regulation of p53 expression. Moreover, the promotion effect of ATF3 on skin cancer cell proliferation was dependent on the p53-Stat3 signaling cascade. Conclusion: Together, the results indicate that ATF3 might promote skin cancer cell proliferation and enhance skin keratinocyte tumor development through inhibiting p53 expression and then activating Stat3 phosphorylation.

EGR 가스 폐열회수에 의한 디젤엔진의 연비에 미치는 ATF 워밍업의 영향 (Effect of Fast ATF Warm-up on Fuel Economy Using Recovery of EGR Gas Waste Heat in a Diesel Engine)

  • 허형석;이동혁;강태구;이헌균;김태진
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.25-32
    • /
    • 2012
  • Cold start driving cycles exhibit an increases in friction losses due to the low temperatures of metal components and media compared to the normal operating engine conditions. These friction losses are adversely affected to fuel economy. Therefore, in recent years, various techniques for the improvement of fuel economy at cold start driving cycles have been introduced. The main techniques are the upward control of coolant temperature and the fast warm-up techniques. In particular, the fast warm-up techniques are implemented with the coolant flow-controlled water pump and the WHRS (waste heat recovery system). This paper deals with an effect of fast ATF (automatic transmission fluid) warm-up on fuel economy using a recovery system of EGR gas waste heat in a diesel engine. On a conventional diesel engine, two ATF coolers have been connected in series, i.e., an air-cooled ATF cooler is placed in front of the condenser of air conditioning system and a water-cooled one is embedded into the radiator header. However, the new system consists of only a water-cooled heat exchanger that has been changed into the integrated structure with an EGR cooler to have the engine coolant directly from the EGR cooler. The ATF cooler becomes the ATF warmer and cooler, i.e., it plays a role of an ATF warmer if the temperature of ATF is lower than that of coolant, and plays a role of an ATF cooler otherwise. Chassis dynamometer experiments demonstrated the fuel economy improvement of over 2.5% with rapid increase in the ATF temperature.

Kahweol from Coffee Induces Apoptosis by Upregulating Activating Transcription Factor 3 in Human Colorectal Cancer Cells

  • Park, Gwang Hun;Song, Hun Min;Jeong, Jin Boo
    • Biomolecules & Therapeutics
    • /
    • 제25권3호
    • /
    • pp.337-343
    • /
    • 2017
  • Kahweol as a coffee-specific diterpene has been reported to induce apoptosis in human cancer cells. Although some molecular targets for kahweol-mediated apoptosis have been elucidated, the further mechanism for apoptotic effect of kahweol is not known. Activating transcription factor 3 (ATF3) has been reported to be associated with apoptosis in colorectal cancer. The present study was performed to investigate the molecular mechanism by which kahweol stimulates ATF3 expression and apoptosis in human colorectal cancer cells. Kahweol increased apoptosis in human colorectal cancer cells. It also increased ATF3 expression through the transcriptional activity. The responsible cis-element for ATF3 transcriptional activation by kahweol was CREB located between -147 to -85 of ATF3 promoter. ATF3 overexpression increased kahweol-mediated cleaved PARP, while ATF3 knockdown attenuated the cleavage of PARP by kahweol. Inhibition of ERK1/2 and $GSK3{\beta}$ blocked kahweol-mediated ATF3 expression. The results suggest that kahweol induces apoptosis through ATF3-mediated pathway in human colorectal cancer cells.

TLR4 Mediates Pneumolysin-Induced ATF3 Expression through the JNK/p38 Pathway in Streptococcus pneumoniae-Infected RAW 264.7 Cells

  • Nguyen, Cuong Thach;Kim, Eun-Hye;Luong, Truc Thanh;Pyo, Suhkneung;Rhee, Dong-Kwon
    • Molecules and Cells
    • /
    • 제38권1호
    • /
    • pp.58-64
    • /
    • 2015
  • Activating transcription factor-3 (ATF3) acts as a negative regulator of cytokine production during Gram-negative bacterial infection. A recent study reported that ATF3 provides protection from Streptococcus pneumoniae infection by activating cytokines. However, the mechanism by which S. pneumoniae induces ATF3 after infection is still unknown. In this study, we show that ATF3 was upregulated via Toll-like receptor (TLR) pathways in response to S. pneumoniae infection in vitro. Induction was mediated by TLR4 and TLR2, which are in the TLR family. The expression of ATF3 was induced by pneumolysin (PLY), a potent pneumococcal virulence factor, via the TLR4 pathway. Furthermore, ATF3 induction is mediated by p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK). Thus, this study reveals a potential role of PLY in modulating ATF3 expression, which is required for the regulation of immune responses against pneumococcal infection in macrophages.

ATF3 발현을 통한 curcumin의 대장암 세포 성장 저해 (Curcumin Inhibits Cell Proliferation of Human Colorectal HCT116 Cells through Up-Regulation of Activating Transcription Factor 3 (ATF3))

  • 김효림;손정빈;임승현;김종식
    • 생명과학회지
    • /
    • 제22권4호
    • /
    • pp.492-498
    • /
    • 2012
  • 파이토케미칼이 암 세포 성장에 미치는 영향을 확인하기 위하여, 대장암 세포주 HCT116에 네 종류의 파이토케미칼을 각각 25 ${\mu}M$의 농도로 처리하였다. 처리한 파이토케미칼 중 curcumin이 가장 강력하게 세포 성장을 억제하였다. 또한 curcumin은 농도의존적으로 세포 성장을 억제하였다. Curcumin에 의한 대장암 세포주 성장 저해 활성에 대한 분자생물학적 기전을 연구하기 위하여 oligo DNA microarray 실험을 수행하였다. 그 결과, 25 ${\mu}M$ curcumin 처리에 의해 2배 이상 발현이 증가된 유전자 137개, 발현이 감소된 유전자 141개를 선별하였다. 발현이 증가된 유전자 중, 세포사멸과 밀접한 관련이 있는 것으로 알려진 유전자 3개를 선택하여, RT-PCR을 통해 이들 유전자의 발현이 감소됨을 확인하였다. 처리한 파이토케미칼 중 curcumin은 가장 강력한 ATF3의 유도자였으며, 농도의존적으로 ATF3의 발현을 증가시켰다. 흥미롭게도, curcumin에 의한 성장 저해는 ATF3-siRNA에 의한 ATF3 유전자 발현감소에 의해 성장이 회복되었다. 또한, ATF3 유전자의 과대발현 후 발현이 변화되는 유전자를 선별한 결과, 세포사멸과 관련된 많은 유전자들이 증가됨을 확인하였다. 결론적으로, 대장암 세포주에서 curcumin에 의한 항 성장활성에 있어서 ATF3 유전자가 중요한 역할을 할 것으로 생각된다.

차량 연비개선을 위한 자동변속기유 열교환기에 대한 실험적 연구 (Experimental Study on Auto-Transmission Fluid Heat Exchanger for Improving Vehicle Fuel Efficiency)

  • 장충만;이용규;강병동;유재석;이종화;김현정;김동권
    • 대한기계학회논문집B
    • /
    • 제35권9호
    • /
    • pp.947-954
    • /
    • 2011
  • 차량에서 구동계의 의한 손실은 전체 연료 소비 손실에서 약 4%를 차지하며 그 중에서도 자동변속기는 구동계 손실에 큰 영향을 끼친다. ATF W/C 열교환기는 근래에 관심이 높아지고 있는 부품인데, 자동변속기 윤활유의 온도를 적정한 상태로 유지시켜 줌으로서 연비 개선 효과를 얻을 수 있다. 본 연구에서는 ATF W/C 열교환기 단품 특성을 실험적으로 파악하고, ATF W/C 열교환기가 실제 차에 장착되었을 때의 연비 개선 효과를 살펴보았다. 본 연구에서는 실험을 통하여 ATF 와 냉각수의 온도와 유량에 대한 유용도를 파악하고 유용도를 예측하기 위한 상관식을 도출하였다. MATLAB의 Simulink 프로그램을 통하여 실험의 결과를 바탕으로 ATF W/C 열교환기 유무에 따른 연료 소모량을 비교 하여 연비 개선 효과를 분석하였다. 그 결과 ATF W/C 열교환기가 장착된 자동차는 0.992% 연비 개선 효과가 나타났다.

Understanding of the functional role(s) of the Activating Transcription Factor 4(ATF4) in HIV regulation and production

  • Lee, Seong-Deok;Yu, Kyung-Lee;Park, Seong-Hyun;Jung, Yu-Mi;Kim, Min-Jeong;You, Ji-Chang
    • BMB Reports
    • /
    • 제51권8호
    • /
    • pp.388-393
    • /
    • 2018
  • The activating transcription factor (ATF) 4 belongs to the ATF/CREB (cAMP Response Element Binding bZIP [Basic Leucine Zipper]) transcription factor family, and plays a central role in the UPR (Unfolded Protein Response) process in cells. The induction of ATF4 expression has previously been shown to increase the replication of HIV-1. However, the detailed mechanism underlying this effect and the factors involved in the regulation of ATF4 function are still unknown. Here, we demonstrate first that knocking out ATF4 using siRNA shows a strong negative effect on HIV-1 production, indicating that ATF4 is a functional positive cellular factor in HIV-1 production. To determine the mechanism by which ATF4 regulates the HIV-1 life cycle, we assessed the effect of the overexpression of wild type ATF4 and its various derivatives on HIV-1 LTR-mediated transcriptional activation and the production of HIV-1 particles. This effect was studied through co-transfection experiments with either reporter vectors or proviral DNA. We found that the N-terminal domains of ATF4 are involved in HIV-1 LTR-mediated transcriptional activation, and thus in HIV-1 production.

ATF3 Mediates Anti-Cancer Activity of Trans-10, cis-12-Conjugated Linoleic Acid in Human Colon Cancer Cells

  • Kim, Kui-Jin;Lee, Jihye;Park, Yeonhwa;Lee, Seong-Ho
    • Biomolecules & Therapeutics
    • /
    • 제23권2호
    • /
    • pp.134-140
    • /
    • 2015
  • Conjugated linoleic acids (CLA) are a family of isomers of linoleic acid. CLA increases growth arrest and apoptosis of human colorectal cancer cells through an isomer-specific manner. ATF3 belongs to the ATF/CREB family of transcription factors and is associated with apoptosis in colorectal cancer. The present study was performed to investigate the molecular mechanism by which t10, c12-CLA stimulates ATF3 expression and apoptosis in human colorectal cancer cells. t10, c12-CLA increased an apoptosis in human colorectal cancer cells in dose dependent manner. t10, c12-CLA induced ATF3 mRNA and luciferase activity of ATF3 promoter in a dose-dependent manner. The responsible region for ATF3 transcriptional activation by t10, c12-CLA is located between -147 and -1850 of ATF3 promoter. mRNA stability of ATF3 was not affected by t10, c12-CLA treatment. t10, c12-CLA increases $GSK3{\beta}$ expression and suppresses IGF-1-stimulated phosphorylation of Akt. The knockdown of ATF3 suppressed expression of $GSK3{\beta}$ and NAG-1 and PARP cleavage. The results suggest that t10, c12-CLA induces apoptosis through ATF3-mediated pathway in human colorectal cancer cells.