• 제목/요약/키워드: AT1 receptor blocker

검색결과 50건 처리시간 0.044초

선택적 COX-2 억제제 NS 398과 EGF 수용체 차단제 AG 1478의 복합투여가 HeLa 세포주의 방사선 감수성에 미치는 영향 (The Modulation of Radiosensitivity by Combined Treatment of Selective COX-2 Inhibitor, NS 398 and EGF Receptor Blocker AG 1478 in HeLa Cell Line)

  • 윤선민;오영기;김주헌;박미자;성인옥;강기문;채규영
    • Radiation Oncology Journal
    • /
    • 제23권1호
    • /
    • pp.51-60
    • /
    • 2005
  • 목적 : 분자 표적의 선택적 억제가 방사선 세포 살상 효과를 증진시키는 것으로 알려져 있으므로 선택적 COX-2 억제제와 EGF 수용체 차단제를 HeLa 세포주에 처리한 후 방사선 효과의 상승작용을 알아보고자 하였다. 대상 및 방법 : 자궁경부암 세포주인 HeLa세포에서 EGF 수용체 차단제 AG 1478, 선택적 COX-2 억제제 NS 398과 방사선을 복합 투여하여 세포성장 억제 분석(cell graph inhibition assay)과 세포사멸 분석(apoptosis assay)을 시행하였고, 방사선 감수성 변화를 살펴보기 위해 세포생존 분석(clonogenic survival assay)을 시행하였다. 방사선 감수성 인자로는 2 Gy에서의 세포생존분획($SF_2$)과 linear-quadratic model을 이용한 dose enhancement ratio (DER)를 사용하였다. 방사선 감수성에 대한 작용기전 분석을 위해 flow cytometry로 세포주기 분석(cell cycle analysls)을 시행하였고, western blot 분석을 통하여 bcl-2와 bax 단백질의 발현 변화를 살펴보았다. 결과 : HeLa세포에 NS 398과 AG 1478을 방사선과 함께 복합 투여한 실험 군에서 세포사멸 정도가 가장 높게 나타났다($8.49\%$ vs. $22.70\%$). 세포주기 분석 결과, 방사선과 복합 약물 처리군에서 $G_0/G_l$ 세포주기 정체와 5 세포 분획 소실이 나타났으며 이러한 변화는 72시간 이후까지 지속되었다 세포생존 분석 결과로는 방사선과 AG 1478군에서 $SF_{2}0.68{\pm}0.07$, DER 1.12를 보인 반면, 방사선과 복합약물처리군에서는 $SF_{2}0.12{\pm}0.01,\;DER\;3.00$으로 나타났다. Western blot분석에서는 방사선과 복합약물처리군에서 bcl-2와 bax 단백질 발현이 모두 감소하는 양상을 보였다. 결론 : 신호전달 체계를 억제하는 분자 표적 약제인 선택적 COX-2 억제제와 EGF 수용체 차단제를 방사선과 복합투여함으로써 HeLa세포의 방사선 감수성이 증가됨을 확인하였다.

Megakaryocyte-Derived IL-8 Acts as a Paracrine Factor for Prostate Cancer Aggressiveness through CXCR2 Activation and Antagonistic AR Downregulation

  • Sadan, Dahal;Prakash, Chaudhary;Yi-Sook, Jung;Jung-Ae, Kim
    • Biomolecules & Therapeutics
    • /
    • 제31권2호
    • /
    • pp.210-218
    • /
    • 2023
  • Prostate cancer is the fifth leading cause of cancer-related mortality in men, primarily because of treatment resistance, recurrence, and metastasis. In the present study, we investigated the role of paracrine interleukin-8 (IL-8) in the antagonistic expression of IL-8 and androgen receptor (AR), and the contribution of IL-8 to prostate cancer aggressiveness. In hormone-responsive LNCaP cells that do not express IL-8, recombinant IL-8 treatment significantly increased expressions of IL-8, CXC chemokine receptor 2 (CXCR2), matrix metalloproteinase (MMP)-2/9, Snail, and vimentin. IL-8 treatment significantly decreased AR and E-cadherin expression. IL-8-induced gene expression changes were suppressed by navarixin, a CXCR1/2 inhibitor, and gallein, a Gβγ inhibitor. In PC-3 androgen-refractory prostate cancer cells, IL-8 knockdown reduced expressions of CXCR2, MMP-2/9, Snail, and vimentin, and increased AR and E-cadherin expressions at the mRNA and protein levels. Co-culture with MEG-01 human megakaryocytic cells secreting high levels of IL-8 induced gene expression changes in both LNCaP and PC-3 cells, similar to those induced by IL-8 treatment. The altered gene expressions were accompanied by significant activation of transcription factor Snail in LNCaP and PC-3 cells. Treatment with the CXCR blocker navarixin inhibited the invasion of PC-3 cells but not LNCaP cells. However, invasion induced by MEG-01 was inhibited by navarixin in both LNCaP and PC-3 cells. The collective findings demonstrate that IL-8 enhances CXCR2 expression, which antagonistically regulates AR expression. More importantly, through changes in IL-8/CXCR2-regulated gene expression, IL-8 induces antiandrogen therapy resistance and epithelial-mesenchymal transition in prostate cancer.

Inhibitory Effects of Olmesartan on Catecholamine Secretion from the Perfused Rat Adrenal Medulla

  • Lim, Hyo-Jeong;Kim, Sang-Yong;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권4호
    • /
    • pp.241-248
    • /
    • 2010
  • The present sutdy aimed to determine whether olmesartan, an angiotensin II (Ang II) type 1 ($AT_1$) receptor blocker, can influence the CA release from the isolated perfused model of the rat adrenal medulla. Olmesartan ($5{\sim}50{\mu}M$) perfused into an adrenal vein for 90 min produced dose- and time-dependent inhibition of the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM, a direct membrane-depolarizer), DMPP (100 ${\mu}M$) and McN-A-343 (100 ${\mu}M$). Olmesartan did not affect basal CA secretion. Also, in adrenal glands loaded with olmesartan (15 ${\mu}M$), the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}M$, an activator of voltage-dependent L-type $Ca^{2+}$ channels), cyclopiazonic acid (10 ${\mu}M$, an inhibitor of cytoplasmic $Ca^{2+}$-ATPase), veratridine (100 ${\mu}M$, an activator of voltage-dependent $Na^+$ channels), and Ang II (100 nM) were markedly inhibited. However, at high concentrations ($150{\sim}300{\mu}M$), olmesartan rather enhanced the ACh-evoked CA secretion. Taken together, these results show that olmesartan at low concentrations inhibits the CA secretion evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by direct membrane depolarization from the rat adrenal medulla, but at high concentrations it rather potentiates the ACh-evoked CA secretion. It seems that olmesartan has a dual action, acting as both agonist and antagonist at nicotinic receptors of the isolated perfused rat adrenal medulla, which might be dependent on the concentration. It is also thought that this inhibitory effect of olmesartan may be mediated by blocking the influx of both $Na^+$ and $Ca^{2+}$ into the rat adrenomedullary chromaffin cells as well as by inhibiting the $Ca^{2+}$ release from the cytoplasmic calcium store, which is thought to be relevant to the $AT_1$ receptor blockade, in addition to its enhancement on the CA secreton.

Gintonin facilitates catecholamine secretion from the perfused adrenal medulla

  • Na, Seung-Yeol;Kim, Ki-Hwan;Choi, Mi-Sung;Ha, Kang-Su;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권6호
    • /
    • pp.629-639
    • /
    • 2016
  • The present study was designed to investigate the characteristics of gintonin, one of components isolated from Korean Ginseng on secretion of catecholamines (CA) from the isolated perfused model of rat adrenal gland and to clarify its mechanism of action. Gintonin (1 to $30{\mu}g/ml$), perfused into an adrenal vein, markedly increased the CA secretion from the perfused rat adrenal medulla in a dose-dependent fashion. The gintonin-evoked CA secretion was greatly inhibited in the presence of chlorisondamine ($1{\mu}M$, an autonomic ganglionic bloker), pirenzepine ($2{\mu}M$, a muscarinic $M_1$ receptor antagonist), Ki14625 ($10{\mu}M$, an $LPA_{1/3}$ receptor antagonist), amiloride (1 mM, an inhibitor of $Na^+/Ca^{2+}$ exchanger), a nicardipine ($1{\mu}M$, a voltage-dependent $Ca^{2+}$ channel blocker), TMB-8 ($1{\mu}M$, an intracellular $Ca^{2+}$ antagonist), and perfusion of $Ca^{2+}$-free Krebs solution with 5mM EGTA (a $Ca^{2+}$chelater), while was not affected by sodium nitroprusside ($100{\mu}M$, a nitrosovasodialtor). Interestingly, LPA ($0.3{\sim}3{\mu}M$, an LPA receptor agonist) also dose-dependently enhanced the CA secretion from the adrenal medulla, but this facilitatory effect of LPA was greatly inhibited in the presence of Ki 14625 ($10{\mu}M$). Moreover, acetylcholine (AC)-evoked CA secretion was greatly potentiated during the perfusion of gintonin ($3{\mu}g/ml$). Taken together, these results demonstrate the first evidence that gintonin increases the CA secretion from the perfused rat adrenal medulla in a dose-dependent fashion. This facilitatory effect of gintonin seems to be associated with activation of LPA- and cholinergic-receptors, which are relevant to the cytoplasmic $Ca^{2+}$ increase by stimulation of the $Ca^{2+}$ influx as well as by the inhibition of $Ca^{2+}$ uptake into the cytoplasmic $Ca^{2+}$ stores, without the increased nitric oxide (NO). Based on these results, it is thought that gintonin, one of ginseng components, can elevate the CA secretion from adrenal medulla by regulating the $Ca^{2+}$ mobilization for exocytosis, suggesting facilitation of cardiovascular system. Also, these findings show that gintonin might be at least one of ginseng-induced hypertensive components.

EFFECT OF A NEW POSITIVE INOTROPIC AGENT, YS-49, A NOVEL TETRAHYDROISOQUINOLINE COMPOUND

  • Lee, Y. S.;Park, H. S. Yoon-;K. C. Chang
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1995년도 춘계학술대회
    • /
    • pp.88-88
    • /
    • 1995
  • Tetrahydroisoquinoline (THI) compounds have various pharmacological actions in the cardiovascular system. Recently, we have synthesized 1-${\alpha}$-naphthylmethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, YS 49. In the present study, we evaluated the effect of YS-49 on positive inotropic and chronotropic action using isolated rat heart and on blood pressure and heart rate using anesthesized rabbit. Vasodilating action was also assessed in isolated rat thoracic aorta. YS 49, concentration-dependently relaxed rat aorta precontracted with phenylephrine (PE, 0.3 ${\mu}$M) and high potassium (high K$\^$+/, 65.4 mM). The 50% inhibitory concentration (IC$\sub$50/) of YS 49 in PE-induced and high K$\^$+/-induded contraction was 5.36 ${\mu}$M and 2.52 ${\mu}$M, respectively. In isolated rat atria, YS 49 increased both heart rate and force, and in anesthesized rabbit it decreased blood pressure but increased heart rate. In addition, to know the mechanism of action of the compound, propranolol, nonselective ${\beta}$-antagonist, and phentolamine, ${\alpha}$-blocker, were used. Furthermore, a comparison with the effect of higenamine, trimetoquinol on the vasodilating action in rat thoracic aorta was also made. The action of YS 49 was inhibited by the presence of propranolo, not pentolamine. These results indicate that cardiotonic and vasodilatory action of YS 49 is attributable, at least in part, for ${\beta}$-receptor stimulation.

  • PDF

Clonidine의 굴근반사(屈筋反射) 억제작용(抑制作用) (Clonidine-induced Inhibition of the Flexion Reflex in the Cat)

  • 권상옥;고상돈;신홍기;김기순
    • The Korean Journal of Physiology
    • /
    • 제21권1호
    • /
    • pp.67-77
    • /
    • 1987
  • Effect of intravenously injected clonidine on the flexion reflex was studied in 15 decerebrated and spinalized cats. The flexion reflex was elicited by electrical stimulation of the tibial nerve or the common peroneal nerve and it was recorded as single unit activity from filaments of the L6 or L7 ventral roots. In order to obtain the late flexion reflex discharges, $A{\delta}$ and C afferent fibers were stimulated with single or train electrical pulses respectively. The flexion reflex, especially the late component, was markedly inhibited after intravenous administration of clonidine. The clonidine-induced inhibition of the flexion reflex was compared before and after treatment of the animals respectively with yohimbine and naloxone. The inhibitory effect on the flexion reflex of clonidine was not altered by naloxone, a ${\mu}-opioid$ receptor blocker, whereas it was completely blocked by yohimbine, an ${\alpha}_2-adrenergic$ antagonist. These results indicate that clonidine inhibits the flexion reflex through excitation of ${\alpha}_2-adrenoceptors$ even at the spinal cord level.

  • PDF

Gap Junction Contributions to the Goldfish Electroretinogram at the Photopic Illumination Level

  • Kim, Doh-Yeon;Jung, Chang-Sub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권3호
    • /
    • pp.219-224
    • /
    • 2012
  • Understanding how the b-wave of the electroretinogram (ERG) is generated by full-field light stimulation is still a challenge in visual neuroscience. To understand more about the origin of the b-wave, we studied the contributions of gap junctions to the ERG b-wave. Many types of retinal neurons are connected to similar and different neighboring neurons through gap junctions. The photopic (cone-dominated) ERG, stimulated by a small light beam, was recorded from goldfish (Carassius auratus) using a corneal electrode. Data were obtained before and after intravitreal injection of agents into the eye under a photopic illumination level. Several agents were used to affect gap junctions, such as dopamine D1 and D2 receptor agonists and antagonists, a nitric oxide (NO) donor, a nitric oxide synthase (NOS) inhibitor, the gap junction blocker meclofenamic acid (MFA), and mixtures of these agents. The ERG b-waves, which were enhanced by MFA, sodium nitroprusside (SNP), SKF 38393, and sulpiride, remained following application of a further injection of a mixture with MFA. The ERG b-waves decreased following $N^G$-nitro-L-arginine methyl ester (L-NAME), SCH 23390, and quinpirole administration but were enhanced by further injection of a mixture with MFA. These results indicate that gap junction activity influences b-waves of the ERG related to NO and dopamine actions.

Effects of High Concentrations of Naftopidil on Dorsal Root-Evoked Excitatory Synaptic Transmissions in Substantia Gelatinosa Neurons In Vitro

  • Uta, Daisuke;Hattori, Tsuyoshi;Yoshimura, Megumu
    • International Neurourology Journal
    • /
    • 제22권4호
    • /
    • pp.252-259
    • /
    • 2018
  • Purpose: Naftopidil ((${\pm}$)-1-[4-(2-methoxyphenyl) piperazinyl]-3-(1-naphthyloxy) propan-2-ol) is prescribed in several Asian countries for lower urinary tract symptoms suggestive of benign prostatic hyperplasia. Previous animal experiments showed that intrathecal injection of naftopidil abolished rhythmic bladder contraction in vivo. Naftopidil facilitated spontaneous inhibitory postsynaptic currents in substantia gelatinosa (SG) neurons in spinal cord slices. These results suggest that naftopidil may suppress the micturition reflex at the spinal cord level. However, the effect of naftopidil on evoked excitatory postsynaptic currents (EPSCs) in SG neurons remains to be elucidated. Methods: Male Sprague-Dawley rats at 6 to 8 weeks old were used. Whole-cell patch-clamp recordings were made using SG neurons in spinal cord slices isolated from adult rats. Evoked EPSCs were analyzed in $A{\delta}$ or C fibers. Naftopidil or prazosin, an ${\alpha}1$-adrenoceptor blocker, was perfused at $100{\mu}M$ or $10{\mu}M$, respectively. Results: Bath-applied $100{\mu}M$ naftopidil significantly decreased the peak amplitudes of $A{\delta}$ and C fiber-evoked EPSCs to $72.0%{\pm}7.1%$ (n=15) and $70.0%{\pm}5.5%$ (n=20), respectively, in a reversible and reproducible manner. Bath application of $100{\mu}M$ prazosin did not inhibit $A{\delta}$ or C fiber-evoked EPSCs. Conclusions: The present study suggests that a high concentration of naftopidil reduces the amplitude of evoked EPSCs via a mechanism that apparently does not involve ${\alpha}1$-adrenoceptors. Inhibition of evoked EPSCs may also contribute to suppression of the micturition reflex, together with nociceptive stimulation.

흰쥐 적출 배뇨근에서 콜린성 및 퓨린성 수용체의 존재 (Existence of Cholinergic and Purinergic Receptor on the Detrusor Muscle of Rat Urinary Bladder)

  • 최태수;권오철;하정희;이광윤;김원준
    • Journal of Yeungnam Medical Science
    • /
    • 제8권2호
    • /
    • pp.138-149
    • /
    • 1991
  • 흰쥐(Sprague-Dawley)의 방광에서 적출한 배뇨근절편을 적출 근편 실험조에 현수하고, 등척성 장력 측정기를 사용하여 그 수축력을 묘기하였다. 배뇨근 절편은 전기장자극에 의해 수축하였으며, 이 수축반응은 콜린에스테라제 억제약물인 physostigmine에 의해 증가하였고 신경말단에서의 choline 재흡수를 방해하는 hemicholinium에 의해 억제되었으며, 신경절봉쇄약물인 hexamethonium에 의해서는 영향을 받지 않았으나 신경축색전도 억제제인 tetrodotoxin에 의해서 소실되었다. 이러한 전기장자극유발 수축은 콜린성 무스카린성 수용체봉쇄약물인 atropine에 의해 부분적으로 길항되었으며, atropine에 의해 길항되지 않는 부분은 ATP 탈감작에 의해 완전히 소실되었다. 배뇨근 절편은 콜린성 무스카린성 수용체 흥분제인 bethanechol과 퓨린성 수용체 흥분제인 ATP에 의하여 농도의존적 수축력 증가를 나타내었으며, 이중 bethanechol 유발수축은 ATP 탈감작에 의해 영향을 받지 않았고, ATP 유발수축은 tetrodotoxin에 의하여 영향을 받지 않았다. 이상의 결과로 보아 흰쥐의 적출배뇨근에는 흥분성 신경전달체계로서 퓨린성 수용체와 콜린성 수용체가 존재하며, 이들은 서로 영향을 미침이 없이 독자적으로 배뇨근 수축에 기여하고 있다고 사료된다.

  • PDF

흰쥐 적출 소장의 수축성에 미치는 GABA의 영향 (Effect of GABA on the Contractility of Small Intestine Isolated from Rat)

  • 허준영;권오철;하정희;이광윤;김원준
    • Journal of Yeungnam Medical Science
    • /
    • 제8권2호
    • /
    • pp.95-105
    • /
    • 1991
  • 흰쥐 적출소장의 수축성에 미치는 GABA의 영향을 관찰하여 다음과 같은 결과를 얻었다. 1. GABA는 소장을 이완시켰으며 그 이완 작용은 십이지장, 공장 그리고 회장의 순이었다. GABA A수용체 효현제인 muscimol 역시 소장을 이완시켰으며, 그 효능의 강도는 십이지장, 공장 그리고 회장의 순이었다. 그러나 GABA B수용체 효현제인 baclofen은 소장의 운동성에 유의한 영향을 미치지 못하였다. 2. 상경적 GABA A수용체 길항제인 bicuculline과 비 상경적 GABA A수용체 길항제인 picrotoxin은 십이지장에 대한 GABA와 muscimol의 이완 작용을 현저히 억제시켰다. 그리고 bicuculline의 억제 작용이 picrotoxin 보다 강하였다. 3. Sodium channel blocker인 tetrodotoxin은 GABA의 이완 작용을 봉쇄하였다. 4. 신경절 봉쇄적인 hexamethonium은 십이지장에 대한 GABA의 이완작용을 길항하지 못하였다. 이상의 실험 결과로 볼 때 흰쥐 소장의 자발 수축운동에 대한 GABA의 이완작용은 소장이 부위에 따라 다르게 나타나며, 그 작용은 postganglionic presynaptic neuron에 존재하는 GABA A 수용체에 작용함으로써 나타나는 것으로 사료된다.

  • PDF