• Title/Summary/Keyword: ASTER GDEM

Search Result 10, Processing Time 0.026 seconds

A study of Accuracy Assessment of Digital Elevation Model in the Greenland (그린란드 수치표고모델의 수직정확도 검증에 관한 연구)

  • Park, Ho Joon;Choi, Yun Soo;Kim, Jae Myeong
    • Spatial Information Research
    • /
    • v.22 no.4
    • /
    • pp.59-65
    • /
    • 2014
  • Recently, increasing demand for 'Digital Elevation Model(DEM)' to climate change research and various development by global warming in the Arctic region. So we need to verify the accuracy to utilize DEM. In this research, we verified 'ASTER GDEM' and 'GIMP DEM' in several DEM which constructed in the Greenland that most of the area is covered ice sheet. We divided greenland into two part, ice sheet area and non ice sheet area by using the ESA globcover. Then, comparing a difference between 'ASTER DEM', 'GIMP DEM' and ICESat elevation data to verify the accuracy. As a result, GIMP DEM has higher accuracy in ice sheet area and ASTER GDEM has higher accuracy in non-ice sheet area.

Vertical Accuracy Assessment of SRTM Ver 3.0 and ASTER GDEM Ver 2 over Korea (한국에서의 SRTM(Ver 3.0)과 ASTER(Ver 2) 전 세계 수치표고모델 정확도 분석)

  • Park, Junku;Kim, Jungsub;Lee, Giha;Yang, Jae E.
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.120-128
    • /
    • 2017
  • The aim of this study is to analyze the accuracy of SRTM Ver 3.0 and ASTER GDEM Ver 2 over Korea. To enable this, accuracy analysis was performed by using precise DEM which was made with multiple aerial image matching and national base map benchmark. The result of this study identified both SRTM and ASTER have different features. The height of the SRTM was found to be higher (3.8 m on average) at lower elevation and lower (8.4 m on average) at higher elevation. In contrast, the ASTER was found to be lower than the actual height at both lower and higher elevation (2.92 m, 4.51 m on average). The cause of this height bias according to the elevation is due to the differences in data acquisition and processing methods of DEM. It was identified however that both SRTM and ASTER were within allowable limits of error. In addition, RMSE of the SRTM was smaller than the ASTER in comparison to benchmark, and also the bias trend both at higher and lower terrain were similar to the precise DEM which was made with multiple aerial image matching. Therefore, the reliability of SRTM can be considered to be higher.

The Analysis of Flood in an Ungauged Watershed using Remotely Sensed and Geospatial Datasets (II) - Focus on Estimation of Flood Inundation - (원격탐사와 공간정보를 활용한 미계측 유역 홍수범람 해석에 관한 연구(II) - 침수 피해면적 산정을 중심으로 -)

  • Son, Ahlong;Kim, Jongpil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.797-808
    • /
    • 2019
  • This study evaluated the applicability of spacebourne datasets to the flood analysis in an ungauged watershed where is no discharge measurements. The Duman River basin of North Korea was selected as a target area which was flooded by recent Typhoon Lionrock. Topographical parameters for flood analysis were estimated from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM). GDEM includes the shortcomings of information on river cross-section, and conducted 2 dimensional flood analysis when considering virtual river cross-section and not considering it. As a result of comparative analysis, an error occurs in the inundation area and depth, but when used carefully, it is considered that the satellite image can be used for creating flood hazard map and utilizing information for response and preparation.

Assessment of Topographic Normalization in Jeju Island with Landsat 7 ETM+ and ASTER GDEM Data (Landsat 7 ETM+ 영상과 ASTER GDEM 자료를 이용한 제주도 지역의 지형보정 효과 분석)

  • Hyun, Chang-Uk;Park, Hyeong-Dong
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.393-407
    • /
    • 2012
  • This study focuses on the correction of topographic effects caused by a combination of solar elevation and azimuth, and topographic relief in single optical remote sensing imagery, and by a combination of changes in position of the sun and topographic relief in comparative analysis of multi-temporal imageries. For the Jeju Island, Republic of Korea, where Mt. Halla and various cinder cones are located, a Landsat 7 ETM+ imagery and ASTER GDEM data were used to normalize the topographic effects on the imagery, using two topographic normalization methods: cosine correction assuming a Lambertian condition and assuming a non-Lambertian c-correction, with kernel sizes of $3{\times}3$, $5{\times}5$, $7{\times}7$, and $9{\times}9$ pixels. The effects of each correction method and kernel size were then evaluated. The c-correction with a kernel size of $7{\times}7$ produced the best result in the case of a land area with various land-cover types. For a land-cover type of forest extracted from an unsupervised classification result using the ISODATA method, the c-correction with a kernel size of $9{\times}9$ produced the best result, and this topographic normalization for a single land cover type yielded better compensation for topographic effects than in the case of an area with various land-cover types. In applying the relative radiometric normalization to topographically normalized three multi-temporal imageries, more invariant spectral reflectance was obtained for infrared bands and the spectral reflectance patterns were preserved in visible bands, compared with un-normalized imageries. The results show that c-correction considering the remaining reflectance energy from adjacent topography or imperfect atmospheric correction yielded superior normalization results than cosine correction. The normalization results were also improved by increasing the kernel size to compensate for vertical and horizontal errors, and for displacement between satellite imagery and ASTER GDEM.

Development of Three Dimensional Animal's Habitat Map by GIS (GIS에 의한 3차원 동물서식도 제작)

  • Park, Joon-Kyu;Kim, Min-Gyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.4
    • /
    • pp.54-62
    • /
    • 2011
  • At present, about 1.6 million bio-species have been discovered in the world. Approximately 30 thousand indigenes have been recorded in Korea and about fifteen thousand species of biology inhabit in Korea national park. Korea national park where has been lived 133 species at 60 percent of endangered species is a very important wildlife protection area. The construction of database about substantive distribution and habitat of wildlife is urgently needed to protect and manage endangered species. In this study, main habitats about animals were registered using GIS program in Jirisan National Park and 3 dimensional habitat map was produced. Also, new plan was suggested to preserve and manage animals in national parks by producing 3 dimensional habitat map. The habitat map was produced using coordinate file of animals, polygon file about boundary of national park, and ASTER GDEM. New conceptional animal habitat map will be used by means of the valuable information when the plans for preservation/management and habitat protection about animals are designed.

Zoning Hydrologic Units for Geospatial Climatology in North Korea (북한지역의 소기후 추정을 위한 수문단위 설정)

  • Kim, Jin-Hee;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.1
    • /
    • pp.20-27
    • /
    • 2011
  • High-definition, geo-referenced digital climate maps can be produced by applying watershed-specific modules to adjust synoptic observations for local effects including cold air drainage. Since there is no information available on North Korean watersheds, existing geospatial technology for digital climate mapping cannot be transferred to North Korea. We applied a watershed extraction algorithm based on ArcHydro to the North Korean portion of ASTER GDEM and utilized geographical information on major rivers and mountains to adjust the products. Proposed hydrologic zoning system for North Korean watersheds consists of 21 river basins, 93 stream basins and 885 catchments. Combined with the existing 840 South Korean hydrologic units, we now have a complete set of 1,725 catchments which may serve a framework for digital climate modeling across whole land area of the Korean Peninsula.

Accuracy Evaluation of Terrain Correction of High Resolution SAR Imagery with the Quality of DEM (DEM 품질에 따른 고해상도 SAR 영상의 지형 보정 정확도 평가)

  • Lee, Kyung Yup;Byun, Young Gi;Kim, Youn Soo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_1
    • /
    • pp.519-528
    • /
    • 2012
  • It was pointed out that the terrain distortion of SAR image is even worse than that of optical image although SAR imagery has the advantages of being independent of solar illumination and weather conditions. It is thus necessary to correct terrain distortion in SAR image for various application areas to integrate SAR and optical image information. There has to be a clear evaluation of terrain correction of high resolution SAR image according to the quality of DEM because the DEM of study site is generally used in the process of terrain correction. To achieve this issue, this paper compared the effects of quality of Digital Elevation Model(DEM) in the process of terrain correction of high resolution SAR images, using the DEM produced from 1:5000 topographic contour maps, LiDAR DEM, ASTER GDEM, SRTM DEM. We used TerraSAR-X and Cosmo-SkyMed, as the test data set, which are constructed on the same X-band SAR system as KOMPSAT-5. In order to evaluate quantitatively the correction results, we conducted comparative evaluation with the KOMPSAT-2 ortho image of the same region. The evaluation results showed that the DEM produced from 1:5000 topographic contour maps achieved successful results in the terrain correction of SAR image compared with the other DEM data, and the widely used SRTM DEM data in various applications was not suitable for the terrain correction of high resolution SAR images.

Topographic Relief and Denudation Resistance by Geologic Type in the Southern Korean Peninsula (한반도 남부의 지질 유형별 지형 기복과 삭박 저항력)

  • Lee, Gwang-Ryul;Park, Chung-Sun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • This study tried to reveal relative surface denudation resistance and ranking by geologic types in the Southern Korean Peninsula using an 1:250,000 digital geologic map and ASTER GDEM. Among rock types such as igneous, sedimentary and metamorphic rocks, metamorphic rock showed the greatest resistance to surface denudation. The most resistant rock to surface denudation by geologic periods (e.g., the Precambrian, Paleozoic, Mesozoic and Cenozoic) was found from the Precambrian. Among the major tectonic settings in the Southern Korean Peninsula such as the Gyeonggi massif, Okcheon belt, Yeongnam massif, Gyeongsang basin and Pohang basin, the Okcheon belt indicated the greatest resistance. The most and least resistant rocks from the representative nine rocks in the Southern Korean Peninsula were Paleozoic limestone, and Cretaceous sedimentary rock and Cenozoic sedimentary rock, respectively. This study suggests that Paleozoic limestone, Cretaceous volcanic rock, Paleozoic sedimentary rock and Precambrian gneiss can be regarded as hard rocks with high elevation, steep slope and complicated relief, while soft rocks with low elevation, gentle slope and simple relief are Jurassic granite, Cretaceous sedimentary rock and Cenozoic sedimentary rock.

Runoff Analysis Evaluation Using Harmonized World Soil Database(HWSD) (HWSD를 이용한 유출해석 평가)

  • Choi, Yun Seok;Kim, Joo Hun;Kim, Kyung Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.570-570
    • /
    • 2016
  • 홍수해석을 위해서는 DEM, 토지피복도, 토양도 등을 이용해서 대상 유역의 수문지형학적 매개변수를 도출해야 한다. 이때 북한과 같은 비접근 지역이나, 지상 관측에 의한 자료가 부족한 해외 지역에 대한 유출해석을 위해서는 대상 지역에 대한 상세한 자료를 얻기 어려우므로, 위성영상이나 전지구 데이터베이스 등과 같은 글로벌 자료를 이용하는 것이 대안이 될 수 있다. 글로벌 지형공간 자료로는 ASTER GDEM과 같은 DEM, Global Map과 같은 토지피복도, HWSD(Harmonized World Soil Database)와 같은 토양도를 이용할 수 있다. 본 연구에서는 이 중 HWSD의 적용성을 평가하였다. HWSD는 UN FAO(Food and Agriculture Organization of the United Nations)의 토지이용변경 프로그램에 따른 지도와 지역 및 국가 토양데이터베이스를 조합해서 만들어 졌으며, 30 arc-second(약 1km)의 해상도를 가진다. 유출해석은 물리적 분포형 모형인 GRM(Grid based Rainfall-runoff Model)을 이용하였으며, 낙동강 수계의 향석 수위관측소 유역을 대상으로 2008년과 2009년에 발생한 2개의 수문사상을 이용하여 연구를 진행하였다. 토양도를 제외한 자료(DEM, 토지피복도 등)는 모두 국내에서 구축된 자료를 이용하였다. 우리나라의 정밀토양도를 이용해서 보정된 모형(매개변수)에 HWSD 자료를 적용한 유출해석 결과, 두 사상에서 모두 유량이 크게 모의되었다. 이는 HWSD에서는 유역 전체가 양토(수리전도도 0.34cm/h)로 정밀토양도(향석 유역 평균 수리전도도 1.07cm/h)에 비해 약 1/3의 수리전도도 값을 가지고, 정밀토양도를 적용한 경우의 평균 토양심은 70cm이지만 HWSD에서는 37cm로 상대적으로 작기 때문에 토양 침투량은 작아지고, 유출량이 크게 계산되는 것으로 판단된다. HWSD를 이용한 모형 보정에서는 토양 수리전도도와 토양심 매개변수를 중심으로 보정하였으며, 그 결과 관측 유량을 잘 재현할 수 있었다. 위성영상을 이용해서 구축되는 토지피복도와는 달리, 토양정보는 원시 자료가 구축된 지역에 따라서 구축방법, 정확도 등에서 크게 차이가 날 수 있다. 그러므로 글로벌 자료를 이용한 유출해석에서는 토양 자료의 적용 및 이와 관련된 매개변수의 주의가 필요할 것으로 판단된다.

  • PDF

A Study on the Method of Producing the 1 km Resolution Seasonal Prediction of Temperature Over South Korea for Boreal Winter Using Genetic Algorithm and Global Elevation Data Based on Remote Sensing (위성고도자료와 유전자 알고리즘을 이용한 남한의 겨울철 기온의 1 km 격자형 계절예측자료 생산 기법 연구)

  • Lee, Joonlee;Ahn, Joong-Bae;Jung, Myung-Pyo;Shim, Kyo-Moon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.661-676
    • /
    • 2017
  • This study suggests a new method not only to produce the 1 km-resolution seasonal prediction but also to improve the seasonal prediction skill of temperature over South Korea. This method consists of four stages of experiments. The first stage, EXP1, is a low-resolution seasonal prediction of temperature obtained from Pusan National University Coupled General Circulation Model, and EXP2 is to produce 1 km-resolution seasonal prediction of temperature over South Korea by applying statistical downscaling to the results of EXP1. EXP3 is a seasonal prediction which considers the effect of temperature changes according to the altitude on the result of EXP2. Here, we use altitude information from ASTER GDEM, satellite observation. EXP4 is a bias corrected seasonal prediction using genetic algorithm in EXP3. EXP1 and EXP2 show poorer prediction skill than other experiments because the topographical characteristic of South Korea is not considered at all. Especially, the prediction skills of two experiments are lower at the high altitude observation site. On the other hand, EXP3 and EXP4 applying the high resolution elevation data based on remote sensing have higher prediction skill than other experiments by effectively reflecting the topographical characteristics such as temperature decrease as altitude increases. In addition, EXP4 reduced the systematic bias of seasonal prediction using genetic algorithm shows the superior performance for temporal variability such as temporal correlation, normalized standard deviation, hit rate and false alarm rate. It means that the method proposed in this study can produces high-resolution and high-quality seasonal prediction effectively.