• Title/Summary/Keyword: ASPEN simulation

Search Result 84, Processing Time 0.025 seconds

Techno-Economic Analysis of Methanol to Olefins Separation Processes (메탄올을 이용한 올레핀 생산 분리공정의 기술 및 경제성 분석)

  • Park, Jonghyun;Jeong, Youngmin;Han, Myungwan
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.69-83
    • /
    • 2020
  • Light olefins are important petrochemicals as well as primary building blocks for various chemical intermediates. As the number of ethane cracking center (ECC) process, in which ethylene accounts for most of the production, has increased in recent years, propylene supply is not catching up with steadily increasing propylene demand. This trend makes the conversion of methanol to olefins to get more industrial importance. The methanol to olefins (MTO) process produces methanol through syngas and obtain olefins such as propylene through methanol. Since the reaction from methanol to olefins provides different product compositions depending on the catalyst used for the reaction, it is important to choose an appropriate separation process for the reaction product with different composition. Four different separation processes are considered for four representative cases of product compositions. The separation processes for the reaction products are evaluated by techno-economic analysis based on the simulation results using Aspen plus. Guidelines are provided for selecting a suitable separation process for each of representative case of product compositions in the MTO process.

Comparative Simulation of 3-zone SMB (Simulated Moving Bed) and 4-zone SMB for IgY (Immunoglobulin Yolk) Purification (IgY (Immunoglobulin Yolk) 분리를 위한 3-영역 SMB (Simulated Moving Bed)와 4-영역 SMB 비교전산모사)

  • Yun, Sang-Hee;Kim, In-Ho
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.866-873
    • /
    • 2012
  • IgY (Immunoglobulin Yolk) is a specific antibody in egg yolk, and it protects human body from virus and antigen. There are a lot of egg yolk components such as lipoprotein and protein. To separate IgY, HPLC (High Performance Liquid Chromatography) and precipitation were used in a batch mode and SMB (Simulated Moving Bed) was adopted for continuous purification of yolk proteins. IgY and other proteins in yolk were separated by using three-zone and four-zone SMB chromatography. Before performing SMB experiments, batch chromatography simulation parameters and adsorption isotherms were obtained. The parameters of batch chromatography were used to simulate SMB using Aspen chromatography. To compare three-zone and four-zone SMB chromatography, simulations in $m_2-m_3$ plane on the triangle theory were carried out. In terms of concentration and purity of both IgY and other lipoproteins, 3-zone SMB process is considered as ideal at the vertex of triangle ($m_2$, $m_3$=0.1, 1.1). 4-zone SMB yields the highest IgY purity at the coordinate ($m_2$, $m_3$=0.06, 0.5), which is the pure raffinate region. In 3-zone SMB without recycle, other lipoproteins in extract are largely affected in purity by small shift from the vertex of triangle ($m_2$, $m_3$=0.1, 1.1).

Simulation of (R)- and (S)- Ketoprofen Separation in Simulated Moving Bed (SMB) ((R)-케토프로펜과 (S)- 케토프로펜 분리를 위한 유사 이동층 크로마토그래피의 전산모사)

  • Lee, Il Song;Lee, In Su;Kim, In Ho
    • KSBB Journal
    • /
    • v.29 no.4
    • /
    • pp.250-262
    • /
    • 2014
  • A simulation study for finding purity changes of extract and raffinate as well as the best purity of (S)-ketoprofen in simulated moving bed (SMB) was performed with changing parameters of $m_2$ and $m_3$ from triangle theory. Aspen simulator allowed separation process simulation of (R)- and (S)-ketoprofen in SMB and compared 4-bed SMB and 8-bed SMB based on the same Henry constant and mass transfer coefficient. The 4-bed SMB consisted of 4 columns (200 mm of length, 10 mm of diameter) and the 8-bed SMB constructed by 8 columns (100 mm of length, 10 mm of diameter), and therefore total column length was made the same as 800 mm. Considering purities of both (R)-and (S)-ketoprofen, both 4-bed SMB and 8-bed SMB had the best purity when $m_2$ and $m_3$ were on 12.0 and 13.0 in the center of triangle. Taking only (S)-ketoprofen into account, 4-bed SMB as well as 8-bed SMB had the best purity when $m_2$ and $m_3$ were on 10.9 and 12.6 in the left outside triangle, and their purities were 93.3 % for 4-bed SMB and 96.9 % for 8-bed SMB.

Simulation Analysis of Sludge Disposal and Volatile Fatty Acids Production from Gravity Pressure Reactor via Wet Air Oxidation (습식산화반응을 통한 중력식반응기로부터의 슬러지 처리 및 유기산 생산 공정모사)

  • Park, Gwon Woo;Seo, Tae Wan;Lee, Hong-Cheol;Hwang, In-Ju
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.248-254
    • /
    • 2016
  • Efficacious wastewater treatment is essential for increasing sewage sludge volume and implementing strict environmental regulations. The operation cost of sludge treatment amounts up to 50% of the total costs for wastewater treatment plants, therefore, an economical sludge destruction method is crucially needed. Amid several destruction methods, wet air oxidation (WAO) can efficiently treat wastewater containing organic pollutants. It can be used not only for sludge destruction but also for useful by-product production. Volatile fatty acids (VFAs), one of many byproducts, is considered to be an important precursor of biofuel and chemical materials. Its high reaction condition has instituted the study of gravity pressure reactor (GPR) for an economical process of WAO to reduce operation cost. Simulation of subcritical condition was conducted using Aspen Plus with predictive Soave-Redlich-Kwong (PSRK) equation of state. Conjointly, simulation analysis for GPR depth, oxidizer type, sludge flow rate and oxidizer injection position was carried out. At GPR depth of 1000m and flow rate of 2 ton/h, the conversion and yield of VFAs were 92.02% and 0.17g/g, respectively.

Experiment and Simulation of PSA Process for $H_2/Ar$ Mixtures gas ($H_2/Ar$ 혼합기체의 PSA 공정 실험과 모사)

  • Kang, Seok-Hyun;Jeong, Byung-Man;Choi, Hyun-Woo;Kim, Sung-Hyun;Lee, Byung-Kwon;Choi, Dae-Ki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.180-190
    • /
    • 2005
  • The PSA cycle was performed for the separation of binary gas mixture $H_2/Ar$ (80%/20%) using the six-step two-bed process. Adsorption equilibrium contains a LRC model for equilibrium adsorption isotherms and a LDF model for mass transfer. Aspen ADSIM, simulator was applied to predict the separation performance. The effect of cycle parameters such as feed rate, adsorption pressure and P/F ratio on the separation of hydrogen has been studied in experiment and simulation. In the results, maximize the recovery of hydrogen as a high purity was 13LPM feed flowrate, 120sec adsorption time, 11atm adsorption pressure and 0.1 P/F ratio in a cyclic steady-state come out since 10th cycle.

The study on kinetic value for simulation in fluidized catalytic gasification (유동층에서의 촉매 석탄가스화 공정 모델 모사를 위한 kinetics에 대한 연구)

  • Jang, Dong-Ha;Jeon, Young-Shin;Kim, Hyung-Taek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.74.1-74.1
    • /
    • 2011
  • As a demand for energy, many studies are increasing about energy resource. One of these resources is coal which reserves of underground. A lot of research to use coal is going on as method of IGCC (Integrated Gasification Combined Cycle). In addition, SNG(Substitute Natural Gas) and IGFC (Integrated Gasification Fuel Cell) are also being developed for fuel & electricity. This technology which uses synthesis gas after gasification is to produce electricity from the Fuel Cell. At this point, important thing is the components of synthesis gas. The main objective is to increase the proportion of methane and hydrogen in synthesis gas. The catalytic gasification is suitable to enhance the composition of methane and hydrogen. In this study, Exxon Predevelopment catalyst gasification study was served as a good reference and then catalytic gasification simulation process is conducting using Aspen Plus in this research. For this modelling, kinetic value should be calculated from Exxon's report which is used for modeling catalytic gasification. Catalytic gasification model was performed by following above method and was analyzed by thermodynamic method through simulation results.

  • PDF

Simulation Study on Liquid Air Energy Storage (LAES) System using Dual Refrigeration Cycles and Thermal Oil Circulation (냉매사이클과 열매체유 순환을 활용한 액화공기에너지저장 시스템 공정모사 연구)

  • Jang, Soonnam;Park, Jongpo
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.63-73
    • /
    • 2018
  • Innovative technical process for Energy Storage System (ESS), Liquid Air Energy Storage system (LAES) is mature technologies based on the gas liquefaction process. In spite of many advantages such as high energy density, no geographical constraints, low investment costs and long useful life, the system has not yet widely commercialized due to low round trip efficiency. To improve RTE and acquire high yield of liquid air, various configurations of LAES process have been considered. In this research, dual refrigerants cycle (R-600a and methanol) for air liquefaction and thermal oil circulation for power generation via liquid air gasification have been applied to improve cycle performance significantly using Aspen HYSYS simulator.

A Study on the N2O Separation Process from Crude N2O (Crude N2O로부터 정제된 N2O 분리공정에 관한 연구)

  • Cho, Jungho;Lee, Taekhong;Park, Jongki
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.467-473
    • /
    • 2005
  • Liquid phase nitrous oxide ($N_2O$) contains air, carbon monoxide, water, carbon dioxide and NOx as main impurities. It is known to be very dangerous to obtain a very pure $N_2O$ product by using solidification at low temperature. In this study a new method to obtain a high purity of $N_2O$ product based on a continuous distillation process was introduced. For the modeling of the continuous distillation process to obtain a product having a purity over 99.999% of $N_2O$ stream, Intalox wire gauze packing- No. SCH-80S gauze packing column was used. Peng-Robinson equation of state was used for the modeling of the continuous distillation process and refrigeration system. Computational results performed in this work showed a good agreement with Aspen Plus simulation results.

Thermal Performance Analysis of Combined Power Plant Using Coal Gas - Development of the Steady-state Model - (석탄가스를 사용하는 복합발전 플랜트의 열성능 해석 -정상상태 성능해석 모델 개발-)

  • 김종진;박명호;안달홍;김남호;송규소;김종영
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.8-18
    • /
    • 1996
  • As a part of comprehensive IGCC process simulation, the thermal performance analysis was performed for coal gas firing combined power plant. The combined cycle analyzed consisted of il Texaco gasifier and a low temperature gas cleanup system for the gasification block and a GE 7FA gas turbine, a HRSG and steam turbine for the power block. A steady state simulator called ASPEN(Advanced System for Process Engineering) code was used to simulate IGCC processes. Composed IGCC configuration included air integration between ASU and gas turbine and steam integration between gasifier, gas clean up and steam turbine. The results showed 20% increase in terms of gas turbine power output(MWe) comparing with natural gas case based on same heat input. The results were compared with other study results which Bechtel Canada Inc. performed for Nova Scotia power plant in 1991 and the consistency was identified within two studies. As a result, the analysing method used in this study is verified as a sound tool for commercial IGCC process evaluation.

  • PDF

The Operational Characteristics of CO2 5 ton/day Absorptive Separation Pilot Plant (이산화탄소 5 ton/day 흡수분리 Pilot Plant 운전 특성)

  • O, Min-Gyu;Park, So-Jin;Han, Keun-Hee;Lee, Jong-Seop;Min, Byoung-Moo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.128-134
    • /
    • 2012
  • The pilot scale experiments can handle the flue gas up to 1,000 $Nm^3/hr$ for separation of carbon dioxide included in real flue gas at coal-fired power plant. The operational characteristics was analyzed with the main experimental variables such as flue gas flow rate, absorbent circulation rate using chemical absorbents mono-ethanolamine( MEA) and 2-amino-2-methyl-1-propanol(AMP). The more flue gas flow rate decreased in 100 $m^3/hr$ in the MEA 20 wt% experiments, the more carbon dioxide removal efficiency was increased 6.7% on average. Carbon dioxide removal efficiency was increased approximately 2.8% according to raise of the 1,000 kg/hr absorbent circulation rate. It also was more than 90% at $110^{\circ}C$ of re-boiler temperature. Carbon dioxide removal efficiency of the MEA was higher than that of the AMP. In the MEA(20 wt%) experiment, carbon dioxide removal efficiency(85.5%) was 10% higher than result(75.5%) of ASPEN plus simulation.