• 제목/요약/키워드: ASIFT

검색결과 4건 처리시간 0.02초

얼굴인식을 위한 어파인 불변 지역 서술자 (Affine Invariant Local Descriptors for Face Recognition)

  • 고용빈;이효종
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권9호
    • /
    • pp.375-380
    • /
    • 2014
  • 오늘날 촬영 상황을 조절할 수 있는 환경, 즉 고정된 촬영각이나 일관된 조도 조건에서는 얼굴인식 기술 수준은 신뢰할 수 있을 정도로 높다. 그러나 복잡한 현실에서의 얼굴 인식은 여전히 어려운 과제이다. SIFT 알고리즘은 촬영각의 변화가 미미할 때에 한하여, 크기와 회전 변화에 무관하게 우수한 성능을 보여주고 있다. 본 논문에서는 다양하게 촬영각이 변하는 환경에서도 얼굴 인식을 할 수 있는 어파인 불변 지역 서술자를 탐지하는 ASIFT(Affine SIFT)라는 알고리즘을 적용하였다. SIFT 알고리즘을 확장하여 만든 ASIFT 알고리즘은 촬영각 변화에 취약한 단점을 극복하였다. 제안하는 방법에서 ASIFT 알고리즘은 표본 이미지에, SIFT 알고리즘은 검증 이미지에 적용하였다. ASIFT 방법은 어파인 변환을 사용하여 다양한 시각에 따른 영상을 생성할 수 있기 때문에 ASIFT 알고리즘은 저장 영상과 실험 영상의 시각 차이에 따른 문제를 해결할 수 있었다. 실험결과 FERET 데이터를 사용했을 때 제안한 방법은 촬영각의 변화가 큰 경우에 기존의 시프트 알고리즘보다도 높은 인식률을 보여주었다.

Improvement of ASIFT for Object Matching Based on Optimized Random Sampling

  • Phan, Dung;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • 제9권2호
    • /
    • pp.1-7
    • /
    • 2013
  • This paper proposes an efficient matching algorithm based on ASIFT (Affine Scale-Invariant Feature Transform) which is fully invariant to affine transformation. In our approach, we proposed a method of reducing similar measure matching cost and the number of outliers. First, we combined the Manhattan and Chessboard metrics replacing the Euclidean metric by a linear combination for measuring the similarity of keypoints. These two metrics are simple but really efficient. Using our method the computation time for matching step was saved and also the number of correct matches was increased. By applying an Optimized Random Sampling Algorithm (ORSA), we can remove most of the outlier matches to make the result meaningful. This method was experimented on various combinations of affine transform. The experimental result shows that our method is superior to SIFT and ASIFT.

다중 기술자를 이용한 잘못된 특징점 정합 제거 (Filtering Feature Mismatches using Multiple Descriptors)

  • 김재영;전희성
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권1호
    • /
    • pp.23-30
    • /
    • 2014
  • 이미지 기술자(descriptor)를 이용한 정합은 최근까지 컴퓨터 비전과 패턴인식 분야에서 사용되고 있는 강력한 정합 방법이다. 그러나 3차원 시점이 변화되거나 밝기가 변화된 이미지, 반복된 패턴이 포함된 이미지 등에서 잘못된 정합들이 발생한다. 본 논문에서는 반복된 패턴이 포함되어 있는 이미지에서 잘못된 정합들이 많이 발생하는 문제점에 대해 기술하고 이를 분석하여 잘못된 정합들을 제거할 수 있는 방법을 제안한다. MDMF(Multiple Descriptors-based Mismatch Filtering) 방법은 각 특징점에 대해 인접한 여러 개의 특징점들의 기술자들을 사용하여 다중 기술자를 생성한 후 이를 활용하여 잘못된 정합들을 제거한다. 실험에서는 크기 변환, 회전 변환, 어파인 변환에 대해 기존 SIFT와 ASIFT의 정합율을 MDMF를 이용해 제거한 정합율과 비교하여 MDMF가 잘못된 정합을 성공적으로 제거할 수 있음을 보였다.

증강현실에서 가려진 마커를 위한 Affine-SIFT 정합 점들을 이용한 마커 검출 기법 (Marker Detection by Using Affine-SIFT Matching Points for Marker Occlusion of Augmented Reality)

  • 김용민;박찬우;박기태;문영식
    • 전자공학회논문지CI
    • /
    • 제48권2호
    • /
    • pp.55-65
    • /
    • 2011
  • 본 논문은 증강현실 시스템에서 마커가 가려진 상황에서도 강건한 마커 검출을 위하여 지역적인 특징 점들을 이용하는 방법을 제안한다. 가려진 마커를 효율적으로 검출하기 위하여, 첫 번째 단계로 등록된 마커와 가려진 마커가 포함된 입력 영상을 Affine-SIFT (ASIFT, Affine-Scale Invariant Features Transform) 방법을 이용해 정합된 특징 점들을 검출한다. 두 번째 단계로 정합된 특징 점들의 이상치(Outlier)를 제거하기 위하여, 등록된 마커의 특징 점들에 주성분 분석(Principal Component Analysis)을 적용하고 제 1 주축과 제 2 주축으로 사영한 후 중심으로 부터의 거리에 대한 평균값을 타원의 장축과 단축으로 지정한다. 세 번째 단계로 마커의 기하학적인 왜곡을 추정하기 위하여 특징 점들이 이루는 Convex-hull 지점들을 다각형의 꼭짓점으로 정한다. 마지막 단계로, 입력영상에 정합된 특징 점들의 기하적인 왜곡의 변화를 추정함으로써 마커의 가려진 환경에 서도 강건한 마커 검출 결과를 얻을 수 있다.