• Title/Summary/Keyword: ART2 algorithm

Search Result 223, Processing Time 0.025 seconds

Wine Quality Prediction by Using Backward Elimination Based on XGBoosting Algorithm

  • Umer Zukaib;Mir Hassan;Tariq Khan;Shoaib Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.31-42
    • /
    • 2024
  • Different industries mostly rely on quality certification for promoting their products or brands. Although getting quality certification, specifically by human experts is a tough job to do. But the field of machine learning play a vital role in every aspect of life, if we talk about quality certification, machine learning is having a lot of applications concerning, assigning and assessing quality certifications to different products on a macro level. Like other brands, wine is also having different brands. In order to ensure the quality of wine, machine learning plays an important role. In this research, we use two datasets that are publicly available on the "UC Irvine machine learning repository", for predicting the wine quality. Datasets that we have opted for our experimental research study were comprised of white wine and red wine datasets, there are 1599 records for red wine and 4898 records for white wine datasets. The research study was twofold. First, we have used a technique called backward elimination in order to find out the dependency of the dependent variable on the independent variable and predict the dependent variable, the technique is useful for predicting which independent variable has maximum probability for improving the wine quality. Second, we used a robust machine learning algorithm known as "XGBoost" for efficient prediction of wine quality. We evaluate our model on the basis of error measures, root mean square error, mean absolute error, R2 error and mean square error. We have compared the results generated by "XGBoost" with the other state-of-the-art machine learning techniques, experimental results have showed, "XGBoost" outperform as compared to other state of the art machine learning techniques.

Calibration of 3D Coordinates in Orthogonal Stereo Vision (직교식 스테레오 비젼에서의 3차원 좌표 보정)

  • Yoon, Hee-Joo;Seo, Young-Wuk;Bae, Jung-Soo;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.504-507
    • /
    • 2005
  • In this paper, we propose a calibration technique of 3D coordinates using orthogonal stereo vision. First, we acquire front- image and upper- image from stereo cameras with real time and extract each coordinates of a moving object using differential operation and ART2 clustering algorithm. Then, we can generate 3D coordinates of that moving object through combining these two coordinates. Finally, we calibrate 3D coordinates using orthogonal stereo vision since 3D coordinates are not accurate due to perspective. Experimental results show that accurate 3D coordinates of a moving object can be generated by the proposed calibration technique.

  • PDF

Recognition of Resident Registration Card using ART2-based RBF Network and face Verification (ART2 기반 RBF 네트워크와 얼굴 인증을 이용한 주민등록증 인식)

  • Kim Kwang-Baek;Kim Young-Ju
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.1-15
    • /
    • 2006
  • In Korea, a resident registration card has various personal information such as a present address, a resident registration number, a face picture and a fingerprint. A plastic-type resident card currently used is easy to forge or alter and tricks of forgery grow to be high-degree as time goes on. So, whether a resident card is forged or not is difficult to judge by only an examination with the naked eye. This paper proposed an automatic recognition method of a resident card which recognizes a resident registration number by using a refined ART2-based RBF network newly proposed and authenticates a face picture by a template image matching method. The proposed method, first, extracts areas including a resident registration number and the date of issue from a resident card image by applying Sobel masking, median filtering and horizontal smearing operations to the image in turn. To improve the extraction of individual codes from extracted areas, the original image is binarized by using a high-frequency passing filter and CDM masking is applied to the binaried image fur making image information of individual codes better. Lastly, individual codes, which are targets of recognition, are extracted by applying 4-directional contour tracking algorithm to extracted areas in the binarized image. And this paper proposed a refined ART2-based RBF network to recognize individual codes, which applies ART2 as the loaming structure of the middle layer and dynamicaly adjusts a teaming rate in the teaming of the middle and the output layers by using a fuzzy control method to improve the performance of teaming. Also, for the precise judgement of forgey of a resident card, the proposed method supports a face authentication by using a face template database and a template image matching method. For performance evaluation of the proposed method, this paper maked metamorphoses of an original image of resident card such as a forgey of face picture, an addition of noise, variations of contrast variations of intensity and image blurring, and applied these images with original images to experiments. The results of experiment showed that the proposed method is excellent in the recognition of individual codes and the face authentication fur the automatic recognition of a resident card.

  • PDF

ACDE2: An Adaptive Cauchy Differential Evolution Algorithm with Improved Convergence Speed (ACDE2: 수렴 속도가 향상된 적응적 코시 분포 차분 진화 알고리즘)

  • Choi, Tae Jong;Ahn, Chang Wook
    • Journal of KIISE
    • /
    • v.41 no.12
    • /
    • pp.1090-1098
    • /
    • 2014
  • In this paper, an improved ACDE (Adaptive Cauchy Differential Evolution) algorithm with faster convergence speed, called ACDE2, is suggested. The baseline ACDE algorithm uses a "DE/rand/1" mutation strategy to provide good population diversity, and it is appropriate for solving multimodal optimization problems. However, the convergence speed of the mutation strategy is slow, and it is therefore not suitable for solving unimodal optimization problems. The ACDE2 algorithm uses a "DE/current-to-best/1" mutation strategy in order to provide a fast convergence speed, where a control parameter initialization operator is used to avoid converging to local optimization. The operator is executed after every predefined number of generations or when every individual fails to evolve, which assigns a value with a high level of exploration property to the control parameter of each individual, providing additional population diversity. Our experimental results show that the ACDE2 algorithm performs better than some state-of-the-art DE algorithms, particularly in unimodal optimization problems.

The Maximum Scatter Travelling Salesman Problem: A Hybrid Genetic Algorithm

  • Zakir Hussain Ahmed;Asaad Shakir Hameed;Modhi Lafta Mutar;Mohammed F. Alrifaie;Mundher Mohammed Taresh
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.193-201
    • /
    • 2023
  • In this paper, we consider the maximum scatter traveling salesman problem (MSTSP), a travelling salesman problem (TSP) variant. The problem aims to maximize the minimum length edge in a salesman's tour that travels each city only once in a network. It is a very complicated NP-hard problem, and hence, exact solutions can be found for small sized problems only. For large-sized problems, heuristic algorithms must be applied, and genetic algorithms (GAs) are found to be very successfully to deal with such problems. So, this paper develops a hybrid GA (HGA) for solving the problem. Our proposed HGA uses sequential sampling algorithm along with 2-opt search for initial population generation, sequential constructive crossover, adaptive mutation, randomly selected one of three local search approaches, and the partially mapped crossover along with swap mutation for perturbation procedure to find better quality solution to the MSTSP. Finally, the suggested HGA is compared with a state-of-art algorithm by solving some TSPLIB symmetric instances of many sizes. Our computational experience reveals that the suggested HGA is better. Further, we provide solutions to some asymmetric TSPLIB instances of many sizes.

Topology, shape, and size optimization of truss structures using modified teaching-learning based optimization

  • Tejani, Ghanshyam G.;Savsani, Vimal J.;Patel, Vivek K.;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • v.2 no.4
    • /
    • pp.313-331
    • /
    • 2017
  • In this study, teaching-learning based optimization (TLBO) is improved by incorporating model of multiple teachers, adaptive teaching factor, self-motivated learning, and learning through tutorial. Modified TLBO (MTLBO) is applied for simultaneous topology, shape, and size optimization of space and planar trusses to study its effectiveness. All the benchmark problems are subjected to stress, displacement, and kinematic stability constraints while design variables are discrete and continuous. Analyses of unacceptable and singular topologies are prohibited by seeing element connectivity through Grubler's criterion and the positive definiteness. Performance of MTLBO is compared to TLBO and state-of-the-art algorithms available in literature, such as a genetic algorithm (GA), improved GA, force method and GA, ant colony optimization, adaptive multi-population differential evolution, a firefly algorithm, group search optimization (GSO), improved GSO, and intelligent garbage can decision-making model evolution algorithm. It is observed that MTLBO has performed better or found nearly the same optimum solutions.

High-Definition Map-based Local Path Planning for Dynamic and Static Obstacle Avoidance (동적 및 정적 물체 회피를 위한 정밀 도로지도 기반 지역 경로 계획)

  • Jung, Euigon;Song, Wonho;Myung, Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.112-121
    • /
    • 2021
  • Unlike a typical small-sized robot navigating in a free space, an autonomous vehicle has to travel in a designated road which has lanes to follow and traffic rules to obey. High-Definition (HD) maps, which include road markings, traffic signs, and traffic lights with high location accuracy, can help an autonomous vehicle avoid the need to detect such challenging road surroundings. With space constraints and a pre-built HD map, a new type of path planning algorithm can be conceived as a substitute for conventional grid-based path planning algorithms, which require substantial planning time to cover large-scale free space. In this paper, we propose an obstacle-avoiding, cost-based planning algorithm in a continuous space that aims to pursue a globally-planned path with the help of HD map information. Experimentally, the proposed algorithm is shown to outperform other state-of-the-art path planning algorithms in terms of computation complexity in a typical urban road setting, thereby achieving real-time performance and safe avoidance of obstacles.

Content-based Image Retrieval Using Data Fusion Strategy (데이터 융합을 이용한 내용기반 이미지 검색에 관한 연구)

  • Paik, Woo-Jin;Jung, Sun-Eun;Kim, Gi-Young;Ahn, Eui-Gun;Shin, Moon-Sun
    • Journal of the Korean Society for information Management
    • /
    • v.25 no.2
    • /
    • pp.49-68
    • /
    • 2008
  • In many information retrieval experiments, the data fusion techniques have been used to achieve higher effectiveness in comparison to the single evidence-based retrieval. However, there had not been many image retrieval studies using the data fusion techniques especially in combining retrieval results based on multiple retrieval methods. In this paper, we describe how the image retrieval effectiveness can be improved by combining two sets of the retrieval results using the Sobel operator-based edge detection and the Self Organizing Map(SOM) algorithms. We used the clip art images from a commercial collection to develop a test data set. The main advantage of using this type of the data set was the clear cut relevance judgment, which did not require any human intervention.

Passport Recognition using Fuzzy Binarization and Enhanced Fuzzy RBF Network

  • Kim, Kwang-Baek
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.222-227
    • /
    • 2004
  • Today, an automatic and accurate processing using computer is essential because of the rapid increase of travelers. The determination of forged passports plays an important role in the immigration control system. Hence, as the preprocessing phase for the determination of forged passports, this paper proposes a novel method for the recognition of passports based on the fuzzy binarization and the fuzzy RBF network. First, for the extraction of individual codes for recognizing, this paper targets code sequence blocks including individual codes by applying Sobel masking, horizontal smearing and a contour tracking algorithm on the passport image. Then the proposed method binarizes the extracted blocks using fuzzy binarization based on the trapezoid type membership function. Then, as the last step, individual codes are recovered and extracted from the binarized areas by applying CDM masking and vertical smearing. This paper also proposes an enhanced fuzzy RBF network that adapts the enhanced fuzzy ART network for the middle layer. This network is applied to the recognition of individual codes. The results of the experiments for performance evaluation on the real passport images showed that the proposed method has the better performance compared with other approaches.

Object Tracking Based on Weighted Local Sub-space Reconstruction Error

  • Zeng, Xianyou;Xu, Long;Hu, Shaohai;Zhao, Ruizhen;Feng, Wanli
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.871-891
    • /
    • 2019
  • Visual tracking is a challenging task that needs learning an effective model to handle the changes of target appearance caused by factors such as pose variation, illumination change, occlusion and motion blur. In this paper, a novel tracking algorithm based on weighted local sub-space reconstruction error is presented. First, accounting for the appearance changes in the tracking process, a generative weight calculation method based on structural reconstruction error is proposed. Furthermore, a template update scheme of occlusion-aware is introduced, in which we reconstruct a new template instead of simply exploiting the best observation for template update. The effectiveness and feasibility of the proposed algorithm are verified by comparing it with some state-of-the-art algorithms quantitatively and qualitatively.