• Title/Summary/Keyword: ARMA GARCH

Search Result 23, Processing Time 0.02 seconds

Sufficient Conditions for Stationarity of Smooth Transition ARMA/GARCH Models

  • Lee, Oe-Sook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.1
    • /
    • pp.237-245
    • /
    • 2007
  • Nonlinear asymmetric time series models have the growing interest in econometrics and finance. Threshold model is one of the successful asymmetric model. We consider a smooth transition ARMA model which converges a.s. to a threshold ARMA model and show that the smooth transition ARMA model admits a stationary measure, provided a suitable condition on the coefficients of the autoregressive parts of the different regimes is satisfied. Stationarity of a smooth transition GARCH model is also obtained.

  • PDF

Numerical study on Jarque-Bera normality test for innovations of ARMA-GARCH models

  • Lee, Tae-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.453-458
    • /
    • 2009
  • In this paper, we consider Jarque-Bera (JB) normality test for the innovations of ARMA-GARCH models. In financial applications, JB test based on the residuals are routinely used for the normality of ARMA-GARCH innovations without a justification. However, the validity of JB test should be justified in advance of the actual practice (Lee et al., 2009). Through the simulation study, it is found that the validity of JB test depends on the shape of test statistic. Specifically, when the constant term is involved in ARMA model, a certain type of residual based JB test produces severe size distortions.

  • PDF

A Study for Forecasting Methods of ARMA-GARCH Model Using MCMC Approach (MCMC 방법을 이용한 ARMA-GARCH 모형에서의 예측 방법 연구)

  • Chae, Wha-Yeon;Choi, Bo-Seung;Kim, Kee-Whan;Park, You-Sung
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.2
    • /
    • pp.293-305
    • /
    • 2011
  • The volatility is one of most important parameters in the areas of pricing of financial derivatives an measuring risks arising from a sudden change of economic circumstance. We propose a Bayesian approach to estimate the volatility varying with time under a linear model with ARMA(p, q)-GARCH(r, s) errors. This Bayesian estimate of the volatility is compared with the ML estimate. We also present the probability of existence of the unit root in the GARCH model.

Volatility analysis and Prediction Based on ARMA-GARCH-typeModels: Evidence from the Chinese Gold Futures Market (ARMA-GARCH 모형에 의한 중국 금 선물 시장 가격 변동에 대한 분석 및 예측)

  • Meng-Hua Li;Sok-Tae Kim
    • Korea Trade Review
    • /
    • v.47 no.3
    • /
    • pp.211-232
    • /
    • 2022
  • Due to the impact of the public health event COVID-19 epidemic, the Chinese futures market showed "Black Swan". This has brought the unpredictable into the economic environment with many commodities falling by the daily limit, while gold performed well and closed in the sunshine(Yan-Li and Rui Qian-Wang, 2020). Volatility is integral part of financial market. As an emerging market and a special precious metal, it is important to forecast return of gold futures price. This study selected data of the SHFE gold futures returns and conducted an empirical analysis based on the generalised autoregressive conditional heteroskedasticity (GARCH)-type model. Comparing the statistics of AIC, SC and H-QC, ARMA (12,9) model was selected as the best model. But serial correlation in the squared returns suggests conditional heteroskedasticity. Next part we established the autoregressive moving average ARMA-GARCH-type model to analysis whether Volatility Clustering and the leverage effect exist in the Chinese gold futures market. we consider three different distributions of innovation to explain fat-tailed features of financial returns. Additionally, the error degree and prediction results of different models were evaluated in terms of mean squared error (MSE), mean absolute error (MAE), Theil inequality coefficient(TIC) and root mean-squared error (RMSE). The results show that the ARMA(12,9)-TGARCH(2,2) model under Student's t-distribution outperforms other models when predicting the Chinese gold futures return series.

Testing the exchange rate data for the parameter change based on ARMA-GARCH model

  • Song, Junmo;Ko, Bangwon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1551-1559
    • /
    • 2013
  • In this paper, we analyze the Korean Won/Japanese 100 Yen exchange rate data based on the ARMA-GARCH model, and perform the test for detecting the parameter changes. As a test statistics, we employ the cumulative sum (CUSUM) test for ARMA-GARCH model, which is introduced by Lee and Song (2008). Our empirical analysis indicates that the KRW/JPY exchange rate series experienced several parameter changes during the period from January 2000 to December 2012, which leads to a fitting of AR-IGARCH model to the whole series.

A study on short-term wind power forecasting using time series models (시계열 모형을 이용한 단기 풍력발전 예측 연구)

  • Park, Soo-Hyun;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1373-1383
    • /
    • 2016
  • The wind energy industry and wind power generation have increased; consequently, the stable supply of the wind power has become an important issue. It is important to accurately predict the wind power with short-term basis in order to make a reliable planning for the power supply and demand of wind power. In this paper, we first analyzed the speed, power and the directions of the wind. The neural network and the time series models (ARMA, ARMAX, ARMA-GARCH, Holt Winters) for wind power generation forecasting were compared based on mean absolute error (MAE). For one to three hour-ahead forecast, ARMA-GARCH model was outperformed, and the neural network method showed a better performance in the six hour-ahead forecast.

Two Sample Test Procedures for Linear Rank Statistics for Garch Processes

  • Chandra S. Ajay;Vanualailai Jito;Raj Sushil D.
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.557-587
    • /
    • 2005
  • This paper elucidates the limiting Gaussian distribution of a class of rank order statistics {$T_N$} for two sample problem pertaining to empirical processes of the squared residuals from two independent samples of GARCH processes. A distinctive feature is that, unlike the residuals of ARMA processes, the asymptotics of {$T_N$} depend on those of GARCH volatility estimators. Based on the asymptotics of {$T_N$}, we empirically assess the relative asymptotic efficiency and effect of the GARCH specification for some GARCH residual distributions. In contrast with the independent, identically distributed or ARMA settings, these studies illuminate some interesting features of GARCH residuals.

ON STRICT STATIONARITY OF NONLINEAR ARMA PROCESSES WITH NONLINEAR GARCH INNOVATIONS

  • Lee, O.
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.2
    • /
    • pp.183-200
    • /
    • 2007
  • We consider a nonlinear autoregressive moving average model with nonlinear GARCH errors, and find sufficient conditions for the existence of a strictly stationary solution of three related time series equations. We also consider a geometric ergodicity and functional central limit theorem for a nonlinear autoregressive model with nonlinear ARCH errors. The given model includes broad classes of nonlinear models. New results are obtained, and known results are shown to emerge as special cases.

The GARCH-GPD in market risks modeling: An empirical exposition on KOSPI

  • Atsmegiorgis, Cheru;Kim, Jongtae;Yoon, Sanghoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.6
    • /
    • pp.1661-1671
    • /
    • 2016
  • Risk analysis is a systematic study of uncertainties and risks we encounter in business, engineering, public policy, and many other areas. Value at Risk (VaR) is one of the most widely used risk measurements in risk management. In this paper, the Korean Composite Stock Price Index data has been utilized to model the VaR employing the classical ARMA (1,1)-GARCH (1,1) models with normal, t, generalized hyperbolic, and generalized pareto distributed errors. The aim of this paper is to compare the performance of each model in estimating the VaR. The performance of models were compared in terms of the number of VaR violations and Kupiec exceedance test. The GARCH-GPD likelihood ratio unconditional test statistic has been found to have the smallest value among the models.

Dependence structure analysis of KOSPI and NYSE based on time-varying copula models

  • Lee, Sangyeol;Kim, Byungsoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1477-1488
    • /
    • 2013
  • In this study, we analyze the dependence structure of KOSPI and NYSE indices based on a two-step estimation procedure. In the rst step, we adopt ARMA-GARCH models with Gaussian mixture innovations for marginal processes. In the second step, time-varying copula parameters are estimated. By using these, we measure the dependence between the two returns with Kendall's tau and Spearman's rho. The two dependence measures for various copulas are illustrated.