• 제목/요약/키워드: ARMA GARCH

검색결과 23건 처리시간 0.016초

Sufficient Conditions for Stationarity of Smooth Transition ARMA/GARCH Models

  • Lee, Oe-Sook
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권1호
    • /
    • pp.237-245
    • /
    • 2007
  • Nonlinear asymmetric time series models have the growing interest in econometrics and finance. Threshold model is one of the successful asymmetric model. We consider a smooth transition ARMA model which converges a.s. to a threshold ARMA model and show that the smooth transition ARMA model admits a stationary measure, provided a suitable condition on the coefficients of the autoregressive parts of the different regimes is satisfied. Stationarity of a smooth transition GARCH model is also obtained.

  • PDF

Numerical study on Jarque-Bera normality test for innovations of ARMA-GARCH models

  • Lee, Tae-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권2호
    • /
    • pp.453-458
    • /
    • 2009
  • In this paper, we consider Jarque-Bera (JB) normality test for the innovations of ARMA-GARCH models. In financial applications, JB test based on the residuals are routinely used for the normality of ARMA-GARCH innovations without a justification. However, the validity of JB test should be justified in advance of the actual practice (Lee et al., 2009). Through the simulation study, it is found that the validity of JB test depends on the shape of test statistic. Specifically, when the constant term is involved in ARMA model, a certain type of residual based JB test produces severe size distortions.

  • PDF

MCMC 방법을 이용한 ARMA-GARCH 모형에서의 예측 방법 연구 (A Study for Forecasting Methods of ARMA-GARCH Model Using MCMC Approach)

  • 채화연;최보승;김기환;박유성
    • 응용통계연구
    • /
    • 제24권2호
    • /
    • pp.293-305
    • /
    • 2011
  • 변동성은 최근 경제가 급변하면서 옵션의 가격 결정과 자산의 위험관리에서 그 중요성이 더 커지고 있다. 이러한 변동성은 분산을 지칭하며, 위험(risk)을 측정하는 수단이 되므로 정확한 추정과 예측이 매우 필요하다. 본 논문에서는 변동성에 대한 모형으로 오차항이 ARMA(p, q)-GARCH(r, s) 모형을 따르는 회귀모형을 설정하고, 이 모형의 모수에 대해 베이지안 추정법을 제시하였다. 또한 평균과 분산(변동성)에 대한 예측값을 구하고 이에 대한 베이지안 구간추정을 하였다. 이를 500개의 모의실험 자료를 통해 최우추정법과 비교하였다. 뿐만 아니라, 베이지안 방법을 이용하여 Frequentist의 관점에서는 구하기 어려운 GARCH 모형에서의 일종의 단위근이 존재할 확률을 구하였다.

ARMA-GARCH 모형에 의한 중국 금 선물 시장 가격 변동에 대한 분석 및 예측 (Volatility analysis and Prediction Based on ARMA-GARCH-typeModels: Evidence from the Chinese Gold Futures Market)

  • 이몽화;김석태
    • 무역학회지
    • /
    • 제47권3호
    • /
    • pp.211-232
    • /
    • 2022
  • Due to the impact of the public health event COVID-19 epidemic, the Chinese futures market showed "Black Swan". This has brought the unpredictable into the economic environment with many commodities falling by the daily limit, while gold performed well and closed in the sunshine(Yan-Li and Rui Qian-Wang, 2020). Volatility is integral part of financial market. As an emerging market and a special precious metal, it is important to forecast return of gold futures price. This study selected data of the SHFE gold futures returns and conducted an empirical analysis based on the generalised autoregressive conditional heteroskedasticity (GARCH)-type model. Comparing the statistics of AIC, SC and H-QC, ARMA (12,9) model was selected as the best model. But serial correlation in the squared returns suggests conditional heteroskedasticity. Next part we established the autoregressive moving average ARMA-GARCH-type model to analysis whether Volatility Clustering and the leverage effect exist in the Chinese gold futures market. we consider three different distributions of innovation to explain fat-tailed features of financial returns. Additionally, the error degree and prediction results of different models were evaluated in terms of mean squared error (MSE), mean absolute error (MAE), Theil inequality coefficient(TIC) and root mean-squared error (RMSE). The results show that the ARMA(12,9)-TGARCH(2,2) model under Student's t-distribution outperforms other models when predicting the Chinese gold futures return series.

Testing the exchange rate data for the parameter change based on ARMA-GARCH model

  • Song, Junmo;Ko, Bangwon
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권6호
    • /
    • pp.1551-1559
    • /
    • 2013
  • In this paper, we analyze the Korean Won/Japanese 100 Yen exchange rate data based on the ARMA-GARCH model, and perform the test for detecting the parameter changes. As a test statistics, we employ the cumulative sum (CUSUM) test for ARMA-GARCH model, which is introduced by Lee and Song (2008). Our empirical analysis indicates that the KRW/JPY exchange rate series experienced several parameter changes during the period from January 2000 to December 2012, which leads to a fitting of AR-IGARCH model to the whole series.

시계열 모형을 이용한 단기 풍력발전 예측 연구 (A study on short-term wind power forecasting using time series models)

  • 박수현;김삼용
    • 응용통계연구
    • /
    • 제29권7호
    • /
    • pp.1373-1383
    • /
    • 2016
  • 풍력에너지 산업이 발전하고 풍력발전에 대한 의존율이 높아짐에 따라 안정적인 공급이 중요해지고 있다. 원활한 전력수급계획을 세우기 위해서 풍력발전량을 정확히 예측하는 것이 중요하다. 본 논문에서는 강원도 평창 횡계리에 설치된 대관령 2풍력(2MW 1기)의 시간별 풍력발전 데이터와 강원도 대관령 기상대에서 관측되는 시간별 풍속과 풍향 데이터를 기상청 지상관측자료에서 수집하여 연구하였다. 풍력발전량 예측을 위하여 신경망 모형과 시계열 모형인 ARMA, ARMAX, ARMA-GARCH, Holt Winters 모형을 비교하였다. 모형 간 예측력을 비교하기 위해 mean absolute error(MAE)를 사용하였다. 모형의 예측 성능 비교 결과 1시간에서 3시간의 단기 예측에 있어서 ARMA-GARCH 모형이 우수한 예측력을 보였다. 6시간 이후 예측에서는 신경망 모형이 우수한 예측을 보였다.

Two Sample Test Procedures for Linear Rank Statistics for Garch Processes

  • Chandra S. Ajay;Vanualailai Jito;Raj Sushil D.
    • Communications for Statistical Applications and Methods
    • /
    • 제12권3호
    • /
    • pp.557-587
    • /
    • 2005
  • This paper elucidates the limiting Gaussian distribution of a class of rank order statistics {$T_N$} for two sample problem pertaining to empirical processes of the squared residuals from two independent samples of GARCH processes. A distinctive feature is that, unlike the residuals of ARMA processes, the asymptotics of {$T_N$} depend on those of GARCH volatility estimators. Based on the asymptotics of {$T_N$}, we empirically assess the relative asymptotic efficiency and effect of the GARCH specification for some GARCH residual distributions. In contrast with the independent, identically distributed or ARMA settings, these studies illuminate some interesting features of GARCH residuals.

ON STRICT STATIONARITY OF NONLINEAR ARMA PROCESSES WITH NONLINEAR GARCH INNOVATIONS

  • Lee, O.
    • Journal of the Korean Statistical Society
    • /
    • 제36권2호
    • /
    • pp.183-200
    • /
    • 2007
  • We consider a nonlinear autoregressive moving average model with nonlinear GARCH errors, and find sufficient conditions for the existence of a strictly stationary solution of three related time series equations. We also consider a geometric ergodicity and functional central limit theorem for a nonlinear autoregressive model with nonlinear ARCH errors. The given model includes broad classes of nonlinear models. New results are obtained, and known results are shown to emerge as special cases.

The GARCH-GPD in market risks modeling: An empirical exposition on KOSPI

  • Atsmegiorgis, Cheru;Kim, Jongtae;Yoon, Sanghoo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권6호
    • /
    • pp.1661-1671
    • /
    • 2016
  • Risk analysis is a systematic study of uncertainties and risks we encounter in business, engineering, public policy, and many other areas. Value at Risk (VaR) is one of the most widely used risk measurements in risk management. In this paper, the Korean Composite Stock Price Index data has been utilized to model the VaR employing the classical ARMA (1,1)-GARCH (1,1) models with normal, t, generalized hyperbolic, and generalized pareto distributed errors. The aim of this paper is to compare the performance of each model in estimating the VaR. The performance of models were compared in terms of the number of VaR violations and Kupiec exceedance test. The GARCH-GPD likelihood ratio unconditional test statistic has been found to have the smallest value among the models.

Dependence structure analysis of KOSPI and NYSE based on time-varying copula models

  • Lee, Sangyeol;Kim, Byungsoo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권6호
    • /
    • pp.1477-1488
    • /
    • 2013
  • In this study, we analyze the dependence structure of KOSPI and NYSE indices based on a two-step estimation procedure. In the rst step, we adopt ARMA-GARCH models with Gaussian mixture innovations for marginal processes. In the second step, time-varying copula parameters are estimated. By using these, we measure the dependence between the two returns with Kendall's tau and Spearman's rho. The two dependence measures for various copulas are illustrated.