The economy of South Korea has experienced two financial crises: the 1997 Asian financial crisis and the 2008 global financial crisis. These crises had a significant impact on the nation's macro-economic indicators. Furthermore, they had a profound influence on container traffic in container ports in Busan, which is the largest port in South Korea in terms of TEUs handled. However, the impact of the Asian financial crisis on container throughput is not clear. In this study, we assume that the two financial crises are independent and different, and then analyze how each of them impacted container throughput in Busan ports. To perform this analysis, we use an intervention model that is a special type of ARIMA model with input series. Intervention models can be used to model and forecast a response series and to analyze the impact of an intervention or event on the series. This study focuses on the latter case, and our results show that the impacts of the financial crises vary considerably.
Journal of the Korean Data and Information Science Society
/
v.25
no.1
/
pp.65-76
/
2014
Housing prices are influenced by external shock factors such as real estate policy or economy. Thus, the intervention effect is important for the development of forecasting model for housing price index. In this paper, we examined the degree of effective power of external shock factors for forecasting housing price index and analyzed time series models for efficient forecasting of housing price index. It is shown that intervention models are better than other models in forecasting results using real data based on the accuracy criteria.
An estimation model for premiums and components is essential to determine reasonable insurance premiums. In this study, we introduce diverse models for the estimation of property damage premiums(premium, depth and frequency) that include a regression model using a dummy variable, additive independent variable model, autoregressive error model, seasonal ARIMA model and intervention model. In addition, the actual property damage premium data was used to estimate the premium, depth and frequency for each model. The estimation results of the models are comparatively examined by comparing the RMSE(Root Mean Squared Errors) of estimates and actual data. Based on real data analysis, we found that the autoregressive error model showed the best performance.
This study investigates the behavioral characteristic difference of the container volumes of three ports-Gwangyang, Incheon, and Pyeongtaek-Dangjin. All series span the period January 2003 to December 2011. I first test whether the series are stationary or not. I can reject the null hypothesis of a unit root in each of the level variables and of a unit root for the residuals from the cointegration at the 5 percent significance level. I hitherto make use of error-correction model and find that Gwangyang port is the slowest in adjusting the short-run disequilibrium, whereas the adjustment speed of Incheon is much faster than that of Gwangyang. The impulse response functions indicate that container volumes increase only a little to the negative shocks in exchange rate, while they respond positively to the shocks in the business activity in a great magnitude and decay very slowly to its pre-shock level. meaning that the shocks last very long. The accumulative response to the exchange rate increase of 20 won per dollar and the 5 point industrial production increase is the smallest in Gwangyang, no more than a half of that of two ports. The intervention-ARIMA models also forecast that Gwangyang port will have much lower growth rate than Incheon and Pyeongtaek-Dangjin port in trading volumes.
This study analyzed the effect of the number of deaths of circulatory system diseases according to 12-day short-term exposure of carbon monoxide from January 2010 to December 2018, and predicted the future treatment cost of circulatory system diseases according to increased carbon monoxide concentration. Data were extracted from Air Korea of Korea Environment Corporation and Korea Statistical Office, and analyzed using Poisson regression analysis and ARIMA intervention model. For statistical processing, SPSS Ver. 21.0 program was used. The results of the study are as follows. First, as a result of analyzing the relationship between the impact of short-term carbon monoxide exposure on death of circulatory system diseases from the day to the previous 11 days, it was found that the previous 11 days had the highest impact. Second, with the increase in carbon monoxide concentration, the future circulatory system disease treatment cost was estimated at 10,123 billion won in 2019, higher than the observed value of 9,443 billion won at the end of December 2018. In addition, when summarized by month, it can be seen that the cost of treatment for circulatory diseases increases from January to December, reflecting seasonal fluctuations. Through such research, the future for a healthy life for all citizens can be realized by distributing various devices and equipment utilizing IoT to preemptively respond to the increase in air pollutants such as carbon monoxide.
Purpose: This study uses 'Autoregressive Integrated Moving Average Model' to predict the impact of a sharp drop in the base rate due to COVID-19 at the present time when government policies for stabilizing house prices are in progress. The purpose of this study is to predict implications for the direction of the government's house policy by predicting changes in house transaction prices and house rental prices after a sharp cut in the base rate. Research design, data, and methodology: The ARIMA intervention model can build a model without additional information with just one time series. Therefore, it is a time-series analysis method frequently used for short-term prediction. After the subprime mortgage, which had shocked since the global financial crisis in April 2007, the bank's interest rate in 2020 is set at a time point close to zero at 0.75%. After that, the model was estimated using the interest rate fluctuations for the Bank of Korea base interest rate, the house transaction price index, and the house rental price index as event variables. Results: In predicting the change in house transaction price due to interest rate intervention, the house transaction price index due to the fall in interest rates was predicted to change after 3 months. As a result, it was 102.47 in April 2020, 102.87 in May 2020, and 103.21 in June 2020. It was expected to rise in the short term. In forecasting the change in house rental price due to interest rate intervention, the house rental price index due to the drop in interest rate was predicted to change after 3 months. As a result, it was 97.76 in April 2020, 97.85 in May 2020, and 97.97 in June 2020. It was expected to rise in the short term. Conclusions: If low interest rates continue to stimulate the contracted economy caused by COVID-19, it seems that there is ample room for house transaction and rental prices to rise amid low growth. Therefore, In order to stabilize the house price due to the low interest rate situation, it is considered that additional measures are needed to suppress speculative demand.
Cho Hun Hee;Kang Kyung In;Kim Chang Duk;Cho moon Young
Proceedings of the Korean Institute Of Construction Engineering and Management
/
autumn
/
pp.64-71
/
2002
This research developed construction cost forecasting model using Building Construction Cost Index, time series analysis and Artificial Neural Networks. By this model, we could calculate the forecasted values of construction cost precisely and efficiently. And we also could find out that the standard deviation of forecasted values is 0.375 and it is a very exact result, so the standard deviation is just 0.33 percent of 112.28, the average of Building Construction Cost Index. And it show more exact forecasting result in comparison with Time Series Analysis.
Much of the data used in the analysis of environmental ecological data is being obtained over time. If the number of time points is small, the data will not be given enough information, so repeated measurements or multiple survey points data should be used to perform a comprehensive analysis. The method used for that case is longitudinal data analysis or mixed model analysis. However, if the amount of information is sufficient due to the large number of time points, repetitive data are not needed and these data are analyzed using time series analysis technique. In particular, with a large number of data points in the current situation, when we want to predict how each variable affects each other, or what trends will be expected in the future, we should analyze the data using time series analysis techniques. In this study, we introduce univariate time series analysis, intervention time series model, transfer function model, and multivariate time series model and review research papers studied in Korea. We also introduce an error correction model, which can be used to analyze environmental ecological data.
Objectives: Public release of and feedback (here after public release) on institutional (clinics and hospitals) cesarean section rates has had the effect of reducing cesarean section rates. However, compared to the isolated intervention, there was scant evidence of the effect of repeated public releases (RPR) on cesarean section rates. The objectives of this study were to evaluate the effect of RPR for reducing cesarean section rates. Methods: From January 2003 to July 2007, the nationwide monthly institutional cesarean section rates data (1 951 303 deliveries at 1194 institutions) were analyzed. We used autoregressive integrated moving average (ARIMA) time-series intervention models to assess the effect of the RPR on cesarean section rates and ordinal logistic regression model to determine the characteristics of the change in cesarean section rates. Results: Among four RPR, we found that only the first one (August 29, 2005) decreased the cesarean section rate (by 0.81 percent) and continued to have an impact period through the last observation in May 2007. Baseline cesarean section rates (OR, 4.7; 95% CI, 3.1 to 7.1) and annual number of deliveries (OR, 2.8; 95% CI, 1.6 to 4.7) of institutions in the upper third of each category at before first intervention had a significant contribution to the decrease of cesarean section rates. Conclusions: We could not found the evidence that RPR has had the significant effect of reducing cesarean section rates. Institutions with upper baseline cesarean section rates and annual number of deliveries were more responsive to RPR.
Park, Bo Hyun;Lee, Tae Jin;Park, Hyeung-Keun;Kim, Chul-Woung;Jeong, Baek-Geun;Lee, Sang-Yi
Health Policy and Management
/
v.22
no.3
/
pp.297-314
/
2012
Purpose : The purpose of this study was to analyze the trend of the number of nursing staffs and skill mix and to assess the effectiveness of hospital nurse expansion policies in Korea. Methods : The trend of the number of nursing staffs and skill mix were analyzed using time series data, which composed of yearly series data from 1975 to 2009. The impact of hospital nurse expansion policies was estimated by autoregressive integrated moving average(ARIMA) intervention model. Results : The number of general hospital and hospital nurses per 100 beds was decreased in late 1980s and late 1990s due to rapid growth of beds. As a result of the number of nurse aids per 100 beds decreased, skill mix became high in general hospital but nurse ratio among hospital nursing staffs was about 50%. Expansion of new nurse and revised differentiated inpatient fee were only effective in expansion of hospital nursing staffs. But they had no effect in general hospitals. Conclusion : In Korea, a few policies related to expansion of hospital nurses have an effect on increasing the number of hospital nurse. Nevertheless, level of hospital nursing staffs is inferior to that of general hospital.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.