• Title/Summary/Keyword: ARIMA-Intervention Model

Search Result 30, Processing Time 0.03 seconds

A Study on the Impact of the Financial Crises on Container Throughput of Busan Port (금융위기로 인한 부산항 컨테이너물동량 변화에 관한 연구)

  • Jeong, Suhyun;Shin, Chang-Hoon
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.2
    • /
    • pp.25-37
    • /
    • 2016
  • The economy of South Korea has experienced two financial crises: the 1997 Asian financial crisis and the 2008 global financial crisis. These crises had a significant impact on the nation's macro-economic indicators. Furthermore, they had a profound influence on container traffic in container ports in Busan, which is the largest port in South Korea in terms of TEUs handled. However, the impact of the Asian financial crisis on container throughput is not clear. In this study, we assume that the two financial crises are independent and different, and then analyze how each of them impacted container throughput in Busan ports. To perform this analysis, we use an intervention model that is a special type of ARIMA model with input series. Intervention models can be used to model and forecast a response series and to analyze the impact of an intervention or event on the series. This study focuses on the latter case, and our results show that the impacts of the financial crises vary considerably.

A study on the forecasting models using housing price index (주택가격지수 예측모형에 관한 비교연구)

  • Lim, Seong Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.65-76
    • /
    • 2014
  • Housing prices are influenced by external shock factors such as real estate policy or economy. Thus, the intervention effect is important for the development of forecasting model for housing price index. In this paper, we examined the degree of effective power of external shock factors for forecasting housing price index and analyzed time series models for efficient forecasting of housing price index. It is shown that intervention models are better than other models in forecasting results using real data based on the accuracy criteria.

Estimating Automobile Insurance Premiums Based on Time Series Regression (시계열 회귀모형에 근거한 자동차 보험료 추정)

  • Kim, Yeong-Hwa;Park, Wonseo
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.2
    • /
    • pp.237-252
    • /
    • 2013
  • An estimation model for premiums and components is essential to determine reasonable insurance premiums. In this study, we introduce diverse models for the estimation of property damage premiums(premium, depth and frequency) that include a regression model using a dummy variable, additive independent variable model, autoregressive error model, seasonal ARIMA model and intervention model. In addition, the actual property damage premium data was used to estimate the premium, depth and frequency for each model. The estimation results of the models are comparatively examined by comparing the RMSE(Root Mean Squared Errors) of estimates and actual data. Based on real data analysis, we found that the autoregressive error model showed the best performance.

The Behavioral Analysis of the Trading Volumes of Gwangyang Port: Comparison with Incheon and Pyeongtaek-Dangjin Port (광양항의 물동량 행태분석: 인천항, 평택.당진항과 비교)

  • Mo, Soowon
    • Journal of Korea Port Economic Association
    • /
    • v.28 no.3
    • /
    • pp.111-125
    • /
    • 2012
  • This study investigates the behavioral characteristic difference of the container volumes of three ports-Gwangyang, Incheon, and Pyeongtaek-Dangjin. All series span the period January 2003 to December 2011. I first test whether the series are stationary or not. I can reject the null hypothesis of a unit root in each of the level variables and of a unit root for the residuals from the cointegration at the 5 percent significance level. I hitherto make use of error-correction model and find that Gwangyang port is the slowest in adjusting the short-run disequilibrium, whereas the adjustment speed of Incheon is much faster than that of Gwangyang. The impulse response functions indicate that container volumes increase only a little to the negative shocks in exchange rate, while they respond positively to the shocks in the business activity in a great magnitude and decay very slowly to its pre-shock level. meaning that the shocks last very long. The accumulative response to the exchange rate increase of 20 won per dollar and the 5 point industrial production increase is the smallest in Gwangyang, no more than a half of that of two ports. The intervention-ARIMA models also forecast that Gwangyang port will have much lower growth rate than Incheon and Pyeongtaek-Dangjin port in trading volumes.

IoT Utilization for Predicting the Risk of Circulatory System Diseases and Medical Expenses Due to Short-term Carbon Monoxide Exposure (일산화탄소 단기 노출에 따른 순환계통 질환 위험과 진료비용 예측을 위한 IoT 활용 방안)

  • Lee, Sangho;Cho, Kwangmoon
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.4
    • /
    • pp.7-14
    • /
    • 2020
  • This study analyzed the effect of the number of deaths of circulatory system diseases according to 12-day short-term exposure of carbon monoxide from January 2010 to December 2018, and predicted the future treatment cost of circulatory system diseases according to increased carbon monoxide concentration. Data were extracted from Air Korea of Korea Environment Corporation and Korea Statistical Office, and analyzed using Poisson regression analysis and ARIMA intervention model. For statistical processing, SPSS Ver. 21.0 program was used. The results of the study are as follows. First, as a result of analyzing the relationship between the impact of short-term carbon monoxide exposure on death of circulatory system diseases from the day to the previous 11 days, it was found that the previous 11 days had the highest impact. Second, with the increase in carbon monoxide concentration, the future circulatory system disease treatment cost was estimated at 10,123 billion won in 2019, higher than the observed value of 9,443 billion won at the end of December 2018. In addition, when summarized by month, it can be seen that the cost of treatment for circulatory diseases increases from January to December, reflecting seasonal fluctuations. Through such research, the future for a healthy life for all citizens can be realized by distributing various devices and equipment utilizing IoT to preemptively respond to the increase in air pollutants such as carbon monoxide.

The Effect of the Reduction in the Interest Rate Due to COVID-19 on the Transaction Prices and the Rental Prices of the House

  • KIM, Ju-Hwan;LEE, Sang-Ho
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.8
    • /
    • pp.31-38
    • /
    • 2020
  • Purpose: This study uses 'Autoregressive Integrated Moving Average Model' to predict the impact of a sharp drop in the base rate due to COVID-19 at the present time when government policies for stabilizing house prices are in progress. The purpose of this study is to predict implications for the direction of the government's house policy by predicting changes in house transaction prices and house rental prices after a sharp cut in the base rate. Research design, data, and methodology: The ARIMA intervention model can build a model without additional information with just one time series. Therefore, it is a time-series analysis method frequently used for short-term prediction. After the subprime mortgage, which had shocked since the global financial crisis in April 2007, the bank's interest rate in 2020 is set at a time point close to zero at 0.75%. After that, the model was estimated using the interest rate fluctuations for the Bank of Korea base interest rate, the house transaction price index, and the house rental price index as event variables. Results: In predicting the change in house transaction price due to interest rate intervention, the house transaction price index due to the fall in interest rates was predicted to change after 3 months. As a result, it was 102.47 in April 2020, 102.87 in May 2020, and 103.21 in June 2020. It was expected to rise in the short term. In forecasting the change in house rental price due to interest rate intervention, the house rental price index due to the drop in interest rate was predicted to change after 3 months. As a result, it was 97.76 in April 2020, 97.85 in May 2020, and 97.97 in June 2020. It was expected to rise in the short term. Conclusions: If low interest rates continue to stimulate the contracted economy caused by COVID-19, it seems that there is ample room for house transaction and rental prices to rise amid low growth. Therefore, In order to stabilize the house price due to the low interest rate situation, it is considered that additional measures are needed to suppress speculative demand.

Forecasting of building construction cost variation using BCCI and it's application (건축공사비지수를 이용한 건설물가 변동분석 및 공사비 실적자료 활용방안 연구)

  • Cho Hun Hee;Kang Kyung In;Kim Chang Duk;Cho moon Young
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.64-71
    • /
    • 2002
  • This research developed construction cost forecasting model using Building Construction Cost Index, time series analysis and Artificial Neural Networks. By this model, we could calculate the forecasted values of construction cost precisely and efficiently. And we also could find out that the standard deviation of forecasted values is 0.375 and it is a very exact result, so the standard deviation is just 0.33 percent of 112.28, the average of Building Construction Cost Index. And it show more exact forecasting result in comparison with Time Series Analysis.

  • PDF

A Review of Time Series Analysis for Environmental and Ecological Data (환경생태 자료 분석을 위한 시계열 분석 방법 연구)

  • Mo, Hyoung-ho;Cho, Kijong;Shin, Key-Il
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.365-373
    • /
    • 2016
  • Much of the data used in the analysis of environmental ecological data is being obtained over time. If the number of time points is small, the data will not be given enough information, so repeated measurements or multiple survey points data should be used to perform a comprehensive analysis. The method used for that case is longitudinal data analysis or mixed model analysis. However, if the amount of information is sufficient due to the large number of time points, repetitive data are not needed and these data are analyzed using time series analysis technique. In particular, with a large number of data points in the current situation, when we want to predict how each variable affects each other, or what trends will be expected in the future, we should analyze the data using time series analysis techniques. In this study, we introduce univariate time series analysis, intervention time series model, transfer function model, and multivariate time series model and review research papers studied in Korea. We also introduce an error correction model, which can be used to analyze environmental ecological data.

Effect of Repeated Public Releases on Cesarean Section Rates

  • Jang, Won-Mo;Eun, Sang-Jun;Lee, Chae-Eun;Kim, Yoon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.44 no.1
    • /
    • pp.2-8
    • /
    • 2011
  • Objectives: Public release of and feedback (here after public release) on institutional (clinics and hospitals) cesarean section rates has had the effect of reducing cesarean section rates. However, compared to the isolated intervention, there was scant evidence of the effect of repeated public releases (RPR) on cesarean section rates. The objectives of this study were to evaluate the effect of RPR for reducing cesarean section rates. Methods: From January 2003 to July 2007, the nationwide monthly institutional cesarean section rates data (1 951 303 deliveries at 1194 institutions) were analyzed. We used autoregressive integrated moving average (ARIMA) time-series intervention models to assess the effect of the RPR on cesarean section rates and ordinal logistic regression model to determine the characteristics of the change in cesarean section rates. Results: Among four RPR, we found that only the first one (August 29, 2005) decreased the cesarean section rate (by 0.81 percent) and continued to have an impact period through the last observation in May 2007. Baseline cesarean section rates (OR, 4.7; 95% CI, 3.1 to 7.1) and annual number of deliveries (OR, 2.8; 95% CI, 1.6 to 4.7) of institutions in the upper third of each category at before first intervention had a significant contribution to the decrease of cesarean section rates. Conclusions: We could not found the evidence that RPR has had the significant effect of reducing cesarean section rates. Institutions with upper baseline cesarean section rates and annual number of deliveries were more responsive to RPR.

Trend analysis of the number of nurses and evaluation of nursing staffs expansion policy in Korean hospitals (시계열 자료를 이용한 병원 간호 인력의 변화 추이 및 병원 간호사 확보를 위한 정책의 효과 평가)

  • Park, Bo Hyun;Lee, Tae Jin;Park, Hyeung-Keun;Kim, Chul-Woung;Jeong, Baek-Geun;Lee, Sang-Yi
    • Health Policy and Management
    • /
    • v.22 no.3
    • /
    • pp.297-314
    • /
    • 2012
  • Purpose : The purpose of this study was to analyze the trend of the number of nursing staffs and skill mix and to assess the effectiveness of hospital nurse expansion policies in Korea. Methods : The trend of the number of nursing staffs and skill mix were analyzed using time series data, which composed of yearly series data from 1975 to 2009. The impact of hospital nurse expansion policies was estimated by autoregressive integrated moving average(ARIMA) intervention model. Results : The number of general hospital and hospital nurses per 100 beds was decreased in late 1980s and late 1990s due to rapid growth of beds. As a result of the number of nurse aids per 100 beds decreased, skill mix became high in general hospital but nurse ratio among hospital nursing staffs was about 50%. Expansion of new nurse and revised differentiated inpatient fee were only effective in expansion of hospital nursing staffs. But they had no effect in general hospitals. Conclusion : In Korea, a few policies related to expansion of hospital nurses have an effect on increasing the number of hospital nurse. Nevertheless, level of hospital nursing staffs is inferior to that of general hospital.