• Title/Summary/Keyword: ARGO

Search Result 77, Processing Time 0.021 seconds

A study on tracking method and normal point formation algorithm of new mobile SLR system in Korea (이동형 SLR의 실시간 추적 및 산출물 생성 알고리즘 연구)

  • Seo, Yoon-Kyung;Rew, Dong-Young;Lim, Hyung-Chul;Kirchner, Georg;Park, Jong-Uk;Youn, Cheong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.370-377
    • /
    • 2011
  • Korea Astronomy and Space Science Institute(KASI) has been developing one mobile SLR system since 2008 named as ARGO-M. Control logic in real-time laser ranging and data processing for normal point from the ranging data are key elements in the operation system of ARGO-M. KASI operation system team performed software logic analysis and related operations for SLR observation with help of Graz SLR station in Austria. This paper describes the algorithm required for SLR operation based on the method in Graz station. We figured out the essential logic for SLR operation and the remedy for the observation quality enhancement through this study.

Mixed Layer Variability in Northern Arabian Sea as Detected by an Argo Float

  • Bhaskar, T.V.S. Udaya;Swain, D.;Ravichandran, M.
    • Ocean Science Journal
    • /
    • v.42 no.4
    • /
    • pp.241-246
    • /
    • 2007
  • Northern Arabian Sea (NAS) between $17^{\circ}N-20.5^{\circ}N$ and $59^{\circ}E-69^{\circ}E$ was observed by using Argo float daily data fur about 9 months, from April 2002 through December 2002. Results showed that during April - May mixed layer shoaled due to light winds, clear sky and intense solar insolation. Sea surface temperature (SST) rose by $2.3^{\circ}C$ and ocean gained an average of 99.8 $Wm^{-2}$. Mixed layer reached maximum depth of about 71 m during June - September owing to strong winds and cloudy skies. Ocean gained abnormally low $\sim18Wm^{-2}$ and SST dropped by $3.4^{\circ}C$. During the inter monsoon period, October, mixed layer shoaled and maintained a depth of 20 to 30 m. November - December was accompanied by moderate winds, dropping of SST by $1.5^{\circ}C$ and ocean lost an average of 52.5 $Wm^{-2}$. Mixed layer deepened gradually reaching a maximum of 62 m in December. Analysis of surface fluxes and winds suggested that winds and fluxes are the dominating factors causing deepening of mixed layer during summer and winter monsoon periods respectively. Relatively big]h correlation between MLD, net heat flux and wind speed revealed that short term variability of MLD coincided well with short term variability of surface forcing.

Observed Seasonal Variability of Barrier Layer in the Bay of Bengal

  • Thadathil, Pankajakshan;Muraleedharan, P.M.;Rao, R.R.;Somayajulu, Y.K.;Reddy, G.V.;Revichandran, C.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.922-925
    • /
    • 2006
  • The objective of this study is first to resolve the spatial and seasonal variability of BL in the bay using 'the most comprehensive' data set available for the bay and then to understand the formation mechanisms and variability in the light of the known dynamical and thermodynamical processes. The most recent study [Masson et al., 2002] on the BL variability in the bay was based on the World Ocean Atlas (WOA98) of Levitus [1998]. The temperature and salinity profiles in the bay have increased considerably after the release of WOA98. The WOA98, itself has been updated to WOA01 in 2001. Further, the deployment of ARGO profiling floats in the bay since 2002 has generated many additional profiles. In addition to the ARGO data and the updated WOA01, the hydrographic data collected from the bay under several Indian national programs and archived in the Indian Oceanographic Data Centre (IODC) was also considered in the present study. The WOA98 and WOA01 consist of only limited data from the IODC archive, especially from the Exclusive Economic Zone of India. Therefore, the combination of these data from the three different sources (WOA01, ARGO and IODC) provides ‘the most comprehensive data set’ for the bay to resolve the BLT structure and its variability in a much better scale than in the past.

  • PDF

Validation of Ocean General Circulation Model (FMS-MOM4) in Relation with Climatological and Argo Data

  • Chang, You-Soon;Cho, Chang-Woo;Youn, Yong-Hoon;Seo, Jang-Won
    • Journal of the Korean earth science society
    • /
    • v.28 no.5
    • /
    • pp.545-555
    • /
    • 2007
  • Ocean general circulation model developed by GFDL on the basis of MOM4 of FMS are examined and evaluated in order to elucidate the global ocean status. The model employs a tripolar grid system to resolve the Arctic Ocean without polar filtering. The meridional resolution gradually increases from $1/3^{\circ}$ at the equator to $1^{\circ}$ at $30^{\circ}N(S)$. Other horizontal grids have the constant $1^{\circ}$ and vertical grids with 50 levels. The ocean is also coupled to the GFDL sea ice model. It considers tidal effects along with fresh water and chlorophyll concentration. This model is integrated for a 100 year duration with 96 cpu forced by German OMIP and CORE dataset. Levitus, WOA01 climatology, serial CTD observations, WOCE and Argo data are all used for model validation. General features of the world ocean circulation are well simulated except for the western boundary and coastal region where strong advection or fresh water flux are dominant. However, we can find that information concerning chlorophyll and sea ice, newly applied to MOM4 as surface boundary condition, can be used to reduce a model bias near the equatorial and North Pacific ocean.

A Study of Global Ocean Data Assimilation using VAF (VAF 변분법을 이용한 전구 해양자료 동화 연구)

  • Ahn, Joong-Bae;Yoon, Yong-Hoon;Cho, Eek-Hyun;Oh, He-Ram
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.69-78
    • /
    • 2005
  • ARCO and TAO data which supply three dimensional global ocean information are assimilated to the background field from a general circulation model, MOM3. Using a variational Analysis using Filter (VAF), which is a spatial variational filter designed to reduce computational time and space efficiently and economically, observed ARGO and TAO data are assimilated to the OGCM-generated background sea temperature for the generation of initial condition of the model. For the assessment of the assimilation impact, a comparative experiment has been done by integrating the model from different intial conditions: one from ARGO-, TAO-data assimilated initial condition and the other from background state without assimilation. The assimilated analysis field not only depicts major oceanic features more realistically but also reduces several systematic model bias that appear in every current OGCMs experiments. From the 10-month of model integrations with and without assimilated initial conditions, it is found that the major assimilated characteristics in sea temperature appeared in the initial field remain persistently throughout the integration. Such implies that the assimilated characteristics of the reduced sea temperature bias is to last in the integration without rapid restoration to the non-assimilated OGCM integration state by dispersing mass field in the form of internal gravity waves. From our analysis, it is concluded that the data assimilation method adapted in this study to MOM3 is reasonable and applicable with dynamical consistency. The success in generating initial condition with ARGO and TAO data assimilation has significant implication upon the prediction of the long-term climate and weather using ocean-atmosphere coupled model.

RO Chemicals 종류 및 운영

  • Martinson, Tom
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.09a
    • /
    • pp.57-85
    • /
    • 1998
  • RO System & Membrance Support Technology Membrance Fouling -Colloidal Fouling -Scale Fouling -Biological Fouling -Chemical Fouling

  • PDF

An Extensible Programming Language for Plugin Features (플러그인 언어로 확장 가능한 프로그래밍 언어)

  • 최종명;유재우
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.632-642
    • /
    • 2004
  • The modern softwares have features of modularity and extensibility, and there are several researches on extensible programming languages and compilers. In this paper, we introduce Argos programming language, which provides the extensibility with the concept of plugin languages. A plugin language is used to define a method of a class, and the plugin language processors can be added and replaced dynamically The plugin languages may be used to support multiparadigm programming or domain specific languages.

Seasonal Variability of Sonic Layer Depth in the Central Arabian Sea

  • Bhaskar, TVS Udaya;Swain, Debadatta;Ravichandran, M
    • Ocean Science Journal
    • /
    • v.43 no.3
    • /
    • pp.147-152
    • /
    • 2008
  • The seasonal variability of sonic layer depth (SLD) in the central Arabian Sea (CAS) (0 to $25^{\circ}N$ and $62-66^{\circ}E$) was studied using the temperature and salinity (T/S) profiles from Argo floats for the years 2002-2006. The atmospheric forcing responsible for the observed changes was explored using the meteorological data from NCEP/NCAR and Quickscat winds. SLD was obtained from sound velocity profiles computed from T/S data. Net heat flux and wind forcing regulated SLD in the CAS. Up-welling and down-welling (Ekman dynamics) associated with the Findlater Jet controlled SLD during the summer monsoon. While in winter monsoon, cooling and convective mixing regulated SLD in the study region. Weak winds, high insolation and positive net heat flux lead to the formation of thin, warm and stratified sonic layer during pre and post summer monsoon periods, respectively.

해양중층부이(ARGO)를 활용한 북동아시아 근해의 혼합층 깊이의 시공간 변동성 분석

  • Lee, Eun-Yeong;Park, Gyeong-Ae
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.137-137
    • /
    • 2010
  • 해양 혼합층은 해양-대기 간의 상호작용을 통해서 기후 변화 뿐만 아니라, 식물성 플랑크톤 분포와 같은 생물학적 측면에도 큰 영향을 줄 수 있기 때문에 매우 중요하다. 따라서 본 연구에서는 우리나라 장단기 기후변동에 많은 영향을 주는 북동아시아 근해 내에서의 혼합층 깊이의 시공간 변동을 분석하였다. 기존에 해양 관측 자료가 절대적으로 부족했던 점을 극복하기 위해 2000년부터 전구 해양에서 실시간으로 수집되기 시작한 해양중층부이(ARGO) 자료를 활용하였다. 지금까지 제시되어 온 다양한 해양 혼합층 결정 기준 중 가장 널리 사용되고 있는 Levitus et al.(1997)의 기준을 적용하여 북동아시아 근해의 혼합층 깊이를 산출하였으며, 그 변화를 위도, 경도, 해안으로부터의 거리, 계절 등에 따라 분석하였다. 또한 계절적 변화에서 겨울철 해양 혼합층 변화의 역전이 나타나는 지역을 분석하였다. 이와 같은 분석결과는 추후 해양 혼합층 깊이 결정 방법에 대한 연구의 기초자료로 활용될 것으로 기대한다.

  • PDF