• Title/Summary/Keyword: ARCH/GARCH model

Search Result 36, Processing Time 0.027 seconds

Comparison of prediction methods for Nonlinear Time series data with Intervention1)

  • Lee, Sung-Duck;Kim, Ju-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.265-274
    • /
    • 2003
  • Time series data are influenced by the external events such as holiday, strike, oil shock, and political change, so the external events cause a sudden change to the time series data. We regard the observation as outlier that occurred as a result of external events. In general, it is called intervention if we know the period and the reason of external events, and it makes an analyst difficult to establish a time series model. Therefore, it is important that we analyze the styles and effects of intervention. In this paper, we considered the linear time series model with invention and compared with nonlinear time series models such as ARCH, GARCH model and also we compared with the combination prediction method that Tong(1990) introduced. In the practical case study, we compared prediction power with RMSE among linear, nonlinear time series model with intervention and combination prediction method.

  • PDF

The Robust Estimation Method for Analyzing the Financial Time Series Data (재무 시계열 자료 분석을 위한 로버스트 추정방법)

  • Kim, S.
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.4
    • /
    • pp.561-569
    • /
    • 2008
  • In this paper, we propose the double robust estimators which are the solutions of the double robust estimating equations to analyze and treat the outliers in the stock market data in Korea including the IMF period. The feasibility study shows that the proposed estimators work quitely better than the least squares estimators and the conventional robust estimators.

Performance Comparison of Estimation Methods for Dynamic Conditional Correlation (DCC 모형에서 동태적 상관계수 추정법의 효율성 비교)

  • Lee, Jiho;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.5
    • /
    • pp.1013-1024
    • /
    • 2015
  • We compare the performance of two representative estimation methods for the dynamic conditional correlation (DCC) GARCH model. The first method is the pairwise estimation which exploits partial information from the paired series, irrespective to the time series dimension. The second is the multi-dimensional estimation that uses full information of the time series. As a simulation for the comparison, we generate a multivariate time series similar to those observed in real markets and construct a DCC GARCH model. As an empirical example, we constitute various portfolios using real KOSPI 200 sector indices and estimate volatility and VaR of the portfolios. Through the estimated dynamic correlations from the simulation and the estimated volatility and value at risk (VaR) of the portfolios, we evaluate the performance of the estimations. We observe that the multi-dimensional estimation tends to be superior to pairwise estimation; in addition, relatively-uncorrelated series can improve the performance of the multi-dimensional estimation.

A Study on Price Volatility and Properties of Time-series for the Tangerine Price in Jeju (제주지역 감귤가격의 시계열적 특성 및 가격변동성에 관한 연구)

  • Ko, Bong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.212-217
    • /
    • 2020
  • The purpose of this study was to analyze the volatility and properties of a time series for tangerine prices in Jeju using the GARCH model of Bollerslev(1986). First, it was found that the time series for the rate of change in tangerine prices had a thicker tail rather than a normal distribution. At a significance level of 1%, the Jarque-Bera statistic led to a rejection of the null hypothesis that the distribution of the time series for the rate of change in tangerine prices is normally distributed. Second, the correlation between the time series was high based on the Ljung-Box Q statistic, which was statistically verified through the ARCH-LM test. Third, the results of the GARCH(1,1) model estimation showed statistically significant results at a significance level of 1%, except for the constant of the mean equation. The persistence parameter value of the variance equation was estimated to be close to 1, which means that there is a high possibility that a similar level of volatility will be present in the future. Finally, it is expected that the results of this study can be used as basic data to optimize the government's tangerine supply and demand control policy.

Empirical Analyses of Asymmetric Conditional Heteroscedasticities for the KOSPI and Korean Won-US Dollar Exchange Rate (KOSPI지수와 원-달러 환율의 변동성의 비대칭성에 대한 실증연구)

  • Maeng, Hye-Young;Shin, Dong-Wan
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1033-1043
    • /
    • 2011
  • In this paper, we use a nested family of models of Generalized Autoregressive Conditional Heteroscedasticity(GARCH) to verify asymmetric conditional heteroscedasticity in the KOSPI and Won-Dollar exchange rate. This study starts from an investigation of whether time series data have asymmetric features not explained by standard GARCH models. First, we use kernel density plot to show the non-normality and asymmetry in data as well as to capture asymmetric conditional heteroscedasticity. Later, we use three representative asymmetric heteroscedastic models, EGARCH(Exponential Garch), GJR-GARCH(Glosten, Jagannathan and Runkle), APARCH(Asymmetric Power Arch) that are improved from standard GARCH models to give a better explanation of asymmetry. Thereby we highlight the fact that volatility tends to respond asymmetrically according to positive and/or negative values of past changes referred to as the leverage effect. Furthermore, it is verified that how the direction of asymmetry is different depending on characteristics of time series data. For the KOSPI and Korean won-US dollar exchange rate, asymmetric heteroscedastic model analysis successfully reveal the leverage effect. We obtained predictive values of conditional volatility and its prediction standard errors by using moving block bootstrap.

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.

A Study on the Volatilities of Inbound Tourists Arrivals using the Multivariate BEKK model (다변량 BEKK모형을 이용한 방한 외래 관광객의 변동성에 대한 연구)

  • Kim, Kyung-Soo;Lee, Kyung-Hee
    • Management & Information Systems Review
    • /
    • v.32 no.3
    • /
    • pp.1-23
    • /
    • 2013
  • In this study, we try to investigate the spillover effects of volatility in international tourists arrivals between Korea and US, Japan, China by using the multivariate BEKK model from January 2005 to January 2013. In the results of this study, after the global financial crisis, we found a cointegration relationship and tourist arrivals of Japan were adjusted to recovery in the short term. Also tourists arrivals from China and Japan showed the long-term elasticity. In the conditional mean equation of a BEKK model, there were the spillover effects. And in the conditional variance equation, ARCH(${\epsilon}^2_t$) coefficients showed a strong influence on the arrivals of their own and the spillover effects and the asymmetric effects on the volatility of China and Japan arrivals. In GARCH(${\sigma}^2_t$) coefficients showed the asymmetric effects and the spillover effects of the conditional volatility among source arrivals. Therefore, we examined the asymmetric reaction of one-way or two-way tourist arrivals between source countries and Korea and the spillover effects related to tourists arrivals of source countries to Korea. We has confirmed a causal relationship between some of the tourists arrivals from source countries to korea.

  • PDF

Volatilities in the Won-Dollar Exchange Markets and GARCH Option Valuation (원-달러 변동성 및 옵션 모형의 설명력에 대한 고찰)

  • Han, Sang-Il
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.12
    • /
    • pp.369-378
    • /
    • 2013
  • The Korean Won-Dollar exchange markets showed radical price movements in the late 1990s and 2008. Therefore it provides good sources for studying volatility phenomena. Using the GARCH option models, I analysed how the prices of foreign exchange options react volatilities in the foreign exchange spot prices. For this I compared the explanatory power of three option models(Black and Scholes, Duan, Heston and Nandi), using the Won-Dollar OTC option markets data from 2006 to 2013. I estimated the parameters using MLE and calculated the mean square pricing errors. According to the my empirical studies, the pricing errors of Duan, Black and Scholes models are 0.1%. And the pricing errors of the Heston and Nandi model is greatest among the three models. So I would like to recommend using Duan or Black and Scholes model for hedging the foreign exchange risks. Finally, the historical average of spot volatilities is about 14%, so trading the options around 5% may lead to serious losses to sellers.

Squared Log-return and TGARCH Model : Asymmetric Volatility in Domestic Time Series (제곱수익률 그래프와 TGARCH 모형을 이용한 비대칭 변동성 분석)

  • Park, J.A.;Song, Y.J.;Baek, J.S.;Hwang, S.Y.;Choi, M.S.
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.3
    • /
    • pp.487-497
    • /
    • 2007
  • As is pointed out by Gourieroux (1997), the volatility effects in financial time series vary according to the signs of the return rates and therefore asymmetric Threshold-GARCH (TGARCH, henceforth) processes are natural extensions of the standard GARCH toward asymmetric volatility modeling. For preliminary detection of asymmetry in volatility, we suggest graphs of squared-log-returns for various financial time series including KOSPI, KOSDAQ and won-Euro exchange rate. Next, asymmetric TGARCH(1,1) model fits are provided in comparisons with standard GARCH(1.1) models.

Volatility, Risk Premium and Korea Discount (변동성, 위험프리미엄과 코리아 디스카운트)

  • Chang, Kook-Hyun
    • The Korean Journal of Financial Management
    • /
    • v.22 no.2
    • /
    • pp.165-187
    • /
    • 2005
  • This paper tries to investigate the relationships among stock return volatility, time-varying risk premium and Korea Discount. Using Korean Composite Stock Price Index (KOSPI) return from January 4, 1980 to August 31, 2005, this study finds possible links between time-varying risk premium and Korea Discount. First of all, this study classifies Korean stock returns during the sample period by three regime-switching volatility period that is to say, low-volatile period medium-volatile period and highly-volatile period by estimating Markov-Switching ARCH model. During the highly volatile period of Korean stock return (09/01/1997-05/31/2001), the estimated time-varying unit risk premium from the jump-diffusion GARCH model was 0.3625, where as during the low volatile period (01/04/1980-l1/30/1985), the time-varying unit risk premium was estimated 0.0284 from the jump diffusion GARCH model, which was about thirteen times less than that. This study seems to find the evidence that highly volatile Korean stock market may induce large time-varying risk premium from the investors and this may lead to Korea discount.

  • PDF