DOI QR코드

DOI QR Code

Squared Log-return and TGARCH Model : Asymmetric Volatility in Domestic Time Series

제곱수익률 그래프와 TGARCH 모형을 이용한 비대칭 변동성 분석

  • Park, J.A. (Department of Statistics, Sookmyung Women's University) ;
  • Song, Y.J. (Department of Statistics, Sookmyung Women's University) ;
  • Baek, J.S. (Department of Statistics, Sookmyung Women's University) ;
  • Hwang, S.Y. (Department of Statistics, Sookmyung Women's University) ;
  • Choi, M.S. (Department of Statistics, Sookmyung Women's University)
  • 박진아 (숙명여자대학교 통계학과) ;
  • 송유진 (숙명여자대학교 통계학과) ;
  • 백지선 (숙명여자대학교 통계학과) ;
  • 황선영 (숙명여자대학교 통계학과) ;
  • 최문선 (숙명여자대학교 통계학과)
  • Published : 2007.11.30

Abstract

As is pointed out by Gourieroux (1997), the volatility effects in financial time series vary according to the signs of the return rates and therefore asymmetric Threshold-GARCH (TGARCH, henceforth) processes are natural extensions of the standard GARCH toward asymmetric volatility modeling. For preliminary detection of asymmetry in volatility, we suggest graphs of squared-log-returns for various financial time series including KOSPI, KOSDAQ and won-Euro exchange rate. Next, asymmetric TGARCH(1,1) model fits are provided in comparisons with standard GARCH(1.1) models.

일반적인 ARCH 형태의 모형들은 자산수익률의 급첨 (leptokurtic; heavy-tail) 성질과 변동성 집중 (volatility clustering) 현상 등의 특징을 잘 포착해내는 반면, 수익률의 부호에 따른 비대칭 레버리지 효과 (leverage effect)는 반영 할 수 없다는 단점을 가진다. 따라서 최근 금융 시계열 분야에서는 비대칭-조건부-이분산 시계열 모형에 대한 관심이 높아지고 있다. 본 연구에서는 국내 금융 시계열자료 (KOSPI, KOSDAQ, 환율, 채권, 주요종목의 주가)의 수익률 제곱을 그래프화 하여 비대칭 이분산성을 시각적으로 탐지하고 이를 바탕으로 비대 칭 TGARCH(1,1) 모형을 적합한 후 기존의 대칭 GARCH(1,1) 모형과 비교분석하고자 한다.

Keywords

References

  1. 박진아, 황선영, 백지선 (2007). 국내 금융시계열의 누적(integrated)이분산성에 대한 사례분석, <응용통계연구>, 20, 53-60 https://doi.org/10.5351/KJAS.2007.20.1.053
  2. Black, F. (1976). Studies of Stock Price Volatility Changes, Proceedings of the 1976 Meeting of the Businiess and Economic Statistics Section, American Statistical Association, 177-181
  3. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307-327 https://doi.org/10.1016/0304-4076(86)90063-1
  4. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50, 987-1007 https://doi.org/10.2307/1912773
  5. Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach, Econometrica, 59, 347-370 https://doi.org/10.2307/2938260
  6. Rabemananjara, R. and Zakoian, J. M. (1993). Threshold ARCH models and asymmetries in volatility, Journal of Applied Econometrics, 8, 31-49 https://doi.org/10.1002/jae.3950080104
  7. Glosten, L. R., Jagannathan, R. and Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks, The Journal of Finance, 48, 1779-1801 https://doi.org/10.2307/2329067