• Title/Summary/Keyword: AR Face Database

Search Result 16, Processing Time 0.022 seconds

Human Face Recognition Based on improved CNN Model with Multi-layers

  • Zhang, Ruyang;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.701-708
    • /
    • 2021
  • As one of the most widely used technology in the world right now, Face recognition has already received widespread attention by all the researcher and institutes. It has been used in many fields such as safety protection, surveillance system, crime control and even in our ordinary life such as home security and so on. This technology with today's technology has advantages such as high connectivity and real time transformation. But we still need to improve its recognition rate, reaction time and also reduce impact of different environmental status to the whole system. So in this paper we proposed a face recognition system model with improved CNN which combining the characteristics of flat network and residual network, integrated learning, simplify network structure and enhance portability and also improve the recognition accuracy. We also used AR and ORL database to do the experiment and result shows higher recognition rate, efficiency and robustness for different image conditions.

RowAMD Distance: A Novel 2DPCA-Based Distance Computation with Texture-Based Technique for Face Recognition

  • Al-Arashi, Waled Hussein;Shing, Chai Wuh;Suandi, Shahrel Azmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5474-5490
    • /
    • 2017
  • Although two-dimensional principal component analysis (2DPCA) has been shown to be successful in face recognition system, it is still very sensitive to illumination variations. To reduce the effect of these variations, texture-based techniques are used due to their robustness to these variations. In this paper, we explore several texture-based techniques and determine the most appropriate one to be used with 2DPCA-based techniques for face recognition. We also propose a new distance metric computation in 2DPCA called Row Assembled Matrix Distance (RowAMD). Experiments on Yale Face Database, Extended Yale Face Database B, AR Database and LFW Database reveal that the proposed RowAMD distance computation method outperforms other conventional distance metrics when Local Line Binary Pattern (LLBP) and Multi-scale Block Local Binary Pattern (MB-LBP) are used for face authentication and face identification, respectively. In addition to this, the results also demonstrate the robustness of the proposed RowAMD with several texture-based techniques.

Occlusive Face Recognition using the Selective Subspace Projection Method (선택적 부공간 투영 방법을 사용한 가려진 얼굴 인식)

  • Kim, Young-Gil;Song, Young-Jun;Kim, Dong-Woo;Ahn, Jae-Hyeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.48-52
    • /
    • 2008
  • In this paper, we propose a new selective subspace projection method in order to recognize the occlusive face image effectively. The conventional subspace projection method is project to basis image using a full image of face. The face recognition rate has reduced because the face characteristic is easy to be distorted by occlusion. To overcome this problem, the proposed method first decide to occlusion. If it hasn't an occlusion, we get the feature vectors with total basis projection using the conventional subspace projection method. If it has an occlusion, we get one with partial basis projection. We get better recognition rate than conventional PCA and NMF using AR face database with occlusive face images.

A Robust Hybrid Method for Face Recognition Under Illumination Variation (조명 변이에 강인한 하이브리드 얼굴 인식 방법)

  • Choi, Sang-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.129-136
    • /
    • 2015
  • We propose a hybrid face recognition to deal with illumination variation. For this, we extract discriminant features by using the different illumination invariant feature extraction methods. In order to utilize both advantages of each method, we evaluate the discriminant power of each feature by using the discriminant distance and then construct a composite feature with only the features that contain a large amount of discriminative information. The experimental results for the Multi-PIE, Yale B, AR and yale databases show that the proposed method outperforms an individual illumination invariant feature extraction method for all the databases.

A Robust Method for Partially Occluded Face Recognition

  • Xu, Wenkai;Lee, Suk-Hwan;Lee, Eung-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2667-2682
    • /
    • 2015
  • Due to the wide application of face recognition (FR) in information security, surveillance, access control and others, it has received significantly increased attention from both the academic and industrial communities during the past several decades. However, partial face occlusion is one of the most challenging problems in face recognition issue. In this paper, a novel method based on linear regression-based classification (LRC) algorithm is proposed to address this problem. After all images are downsampled and divided into several blocks, we exploit the evaluator of each block to determine the clear blocks of the test face image by using linear regression technique. Then, the remained uncontaminated blocks are utilized to partial occluded face recognition issue. Furthermore, an improved Distance-based Evidence Fusion approach is proposed to decide in favor of the class with average value of corresponding minimum distance. Since this occlusion removing process uses a simple linear regression approach, the completely computational cost approximately equals to LRC and much lower than sparse representation-based classification (SRC) and extended-SRC (eSRC). Based on the experimental results on both AR face database and extended Yale B face database, it demonstrates the effectiveness of the proposed method on issue of partial occluded face recognition and the performance is satisfactory. Through the comparison with the conventional methods (eigenface+NN, fisherfaces+NN) and the state-of-the-art methods (LRC, SRC and eSRC), the proposed method shows better performance and robustness.

Research Trends in Medical Simulation Education Based on Virtual Reality (VR) and Augmented Reality (AR) (가상현실 (VR) 및 증강현실 (AR) 기반 의료 시뮬레이션 교육에 관한 연구 동향)

  • Sung Hyun Kyung;Shin Na Min
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.38 no.1
    • /
    • pp.78-87
    • /
    • 2024
  • Purpose To develop an educational program using virtual reality (VR) and augmented reality (AR) in oriental medicine education, this study investigated the status of programs currently being used mainly in the fields of medicine, nursing, and dentistry, and was the basis for developing an oriental medicine education program. We plan to use this for future research purposes. Methods To investigate medical simulation education using VR and AR technologies, 72 studies were searched using the ProQuest Central Database (period 1.1.2000 to 10.10.2023.) Of these, 22 were selected for analysis. Results Among the selected studies, the educational fields of the program were 59% (13 studies) in medicine, 32% (7 studies) in nursing, 9% (2 studies) in dentistry, 73% (16 studies) were VR in terms of applied technology, and 27% (6 studies) in AR. Conclusions Recently, research on VRand AR has increased in the medical field. As patient rights and medical environments change, clinical practice education programs using new technologies are needed, in addition to traditional face-to-face practice. Related research is expected to be active in the field of Oriental medicine in the future.

A Study on Face Recognition Based on Modified Otsu's Binarization and Hu Moment (변형 Otsu 이진화와 Hu 모멘트에 기반한 얼굴 인식에 관한 연구)

  • 이형지;정재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11C
    • /
    • pp.1140-1151
    • /
    • 2003
  • This paper proposes a face recognition method based on modified Otsu's binarization and Hu moment. Proposed method is robust to brightness, contrast, scale, rotation, and translation changes. As the proposed modified Otsu's binarization computes other thresholds from conventional Otsu's binarization, namely we create two binary images, we can extract higher dimensional feature vector. Here the feature vector has properties of robustness to brightness and contrast changes because the proposed method is based on Otsu's binarization. And our face recognition system is robust to scale, rotation, and translation changes because of using Hu moment. In the perspective of brightness, contrast, scale, rotation, and translation changes, experimental results with Olivetti Research Laboratory (ORL) database and the AR database showed that average recognition rates of conventional well-known principal component analysis (PCA) are 93.2% and 81.4%, respectively. Meanwhile, the proposed method for the same databases has superior performance of the average recognition rates of 93.2% and 81.4%, respectively.

2D-MELPP: A two dimensional matrix exponential based extension of locality preserving projections for dimensional reduction

  • Xiong, Zixun;Wan, Minghua;Xue, Rui;Yang, Guowei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.2991-3007
    • /
    • 2022
  • Two dimensional locality preserving projections (2D-LPP) is an improved algorithm of 2D image to solve the small sample size (SSS) problems which locality preserving projections (LPP) meets. It's able to find the low dimension manifold mapping that not only preserves local information but also detects manifold embedded in original data spaces. However, 2D-LPP is simple and elegant. So, inspired by the comparison experiments between two dimensional linear discriminant analysis (2D-LDA) and linear discriminant analysis (LDA) which indicated that matrix based methods don't always perform better even when training samples are limited, we surmise 2D-LPP may meet the same limitation as 2D-LDA and propose a novel matrix exponential method to enhance the performance of 2D-LPP. 2D-MELPP is equivalent to employing distance diffusion mapping to transform original images into a new space, and margins between labels are broadened, which is beneficial for solving classification problems. Nonetheless, the computational time complexity of 2D-MELPP is extremely high. In this paper, we replace some of matrix multiplications with multiple multiplications to save the memory cost and provide an efficient way for solving 2D-MELPP. We test it on public databases: random 3D data set, ORL, AR face database and Polyu Palmprint database and compare it with other 2D methods like 2D-LDA, 2D-LPP and 1D methods like LPP and exponential locality preserving projections (ELPP), finding it outperforms than others in recognition accuracy. We also compare different dimensions of projection vector and record the cost time on the ORL, AR face database and Polyu Palmprint database. The experiment results above proves that our advanced algorithm has a better performance on 3 independent public databases.

Face Recognition Robust to Brightness, Contrast, Scale, Rotation and Translation (밝기, 명암도, 크기, 회전, 위치 변화에 강인한 얼굴 인식)

  • 이형지;정재호
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.149-156
    • /
    • 2003
  • This paper proposes a face recognition method based on modified Otsu binarization, Hu moment and linear discriminant analysis (LDA). Proposed method is robust to brightness, contrast, scale, rotation, and translation changes. Modified Otsu binarization can make binary images that have the invariant characteristic in brightness and contrast changes. From edge and multi-level binary images obtained by the threshold method, we compute the 17 dimensional Hu moment and then extract feature vector using LDA algorithm. Especially, our face recognition system is robust to scale, rotation, and translation changes because of using Hu moment. Experimental results showed that our method had almost a superior performance compared with the conventional well-known principal component analysis (PCA) and the method combined PCA and LDA in the perspective of brightness, contrast, scale, rotation, and translation changes with Olivetti Research Laboratory (ORL) database and the AR database.

Geometrical Feature-Based Detection of Pure Facial Regions (기하학적 특징에 기반한 순수 얼굴영역 검출기법)

  • 이대호;박영태
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.773-779
    • /
    • 2003
  • Locating exact position of facial components is a key preprocessing for realizing highly accurate and reliable face recognition schemes. In this paper, we propose a simple but powerful method for detecting isolated facial components such as eyebrows, eyes, and a mouth, which are horizontally oriented and have relatively dark gray levels. The method is based on the shape-resolving locally optimum thresholding that may guarantee isolated detection of each component. We show that pure facial regions can be determined by grouping facial features satisfying simple geometric constraints on unique facial structure. In the test for over 1000 images in the AR -face database, pure facial regions were detected correctly for each face image without wearing glasses. Very few errors occurred in the face images wearing glasses with a thick frame because of the occluded eyebrow -pairs. The proposed scheme may be best suited for the later stage of classification using either the mappings or a template matching, because of its capability of handling rotational and translational variations.