• Title/Summary/Keyword: AQP4

Search Result 46, Processing Time 0.024 seconds

ALTERED EXPRESSION OF SODIUM TRANSPORTERS AND WATER CHANNELS FOLLOWING SYMPATHETIC AND PARASYMPATHETIC DENERVATION IN RAT SUBMANDIBULAR GLAND (흰쥐 악하선에서 교감신경과 부교감신경에 의한 나트륨 운반체 및 수분 통로 조절)

  • Kim, Gi-Young;Ryu, Sun-Youl
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.1
    • /
    • pp.24-30
    • /
    • 2005
  • The flow of saliva is controlled entirely by nervous stimuli. The present study was aimed to explore the role of sympathetic and parasympathetic nerves in the regulation of sodium transporters and water channels in the salivary gland. Rats were denervated of their sympathetic and parasympathetic nerves to the submandibular gland, and the expression of sodium transporters and water channels was determined. The expression of either ${\alpha}-1$ or ${\beta}-1$ subunit of Na, K-ATPase was not significantly affected by the sympathetic denervation. On the contrary, the expression of both subunits was decreased by the parasympathetic denervation. The expression of ${\alpha}-,\;{\beta}-$, and ${\gamma}$-subunits of ENaC was not significantly affected by the sympathetic denervation, but was increased by the parasympathetic denervation. On the contrary, the expression of NHE3 was markedly decreased by both the sympathetic and the parasympathetic denervation. The sympathetic denervation significantly increased the expression of AQP1, while the parasympathetic denervation was without effect. The sympathetic and parasympathetic denervation significantly increased the expression of AQP4. The sympathetic denervation did not affect the expression of AQP5, but the parasympathetic denervation significantly decreased it. These results suggest that sympathetic and parasympathetic nerves have tonic effects on the regulation of sodium transporters and AQP water channels in the salivary gland. The sympathetic and parasympathetic denervation may then result in alterations of secretory rate and electrolyte composition of the saliva.

Sympathetic and parasympathetic regulation of sodium transporters and water channels in rat submandibular gland

  • Jung, Hyun;Ryu, Sun-Youl
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The present study was aimed to explore the role of sympathetic and parasympathetic nerves in the regulation of sodium transporters and water channels in the salivary gland. Rats were denervated of their sympathetic and parasympathetic nerves to the submandibular gland, and the glandular expression of sodium transporters and water channels was determined by Western blot analysis. The expression of either ${\alpha}1$ or ${\beta}1$ subunit of Na, K-ATPase was not significantly affected either by the sympathetic or by the parasympathetic denervation. The expression of subunits of epithelial sodium channels was significantly increased both in the denervated and contralateral glands either by the sympathetic or by the parasympathetic denervation. Neither the sympathetic nor the parasympathetic denervation significantly altered the expression of aquaporin-1 (AQP1). Nor was the expression of AQP4 affected significantly by the parasympathetic or the sympathetic denervation. On the contrary, the expression of AQP5 was significantly increased not only by the parasympathetic but also by the sympathetic denervation. These results suggest that sympathetic and parasympathetic nerves have tonic regulatory effects on the regulation of certain sodium transporters and AQP water channels in the salivary gland.

Effects of Cinnamaldehyde on Salivary Gland Tissue in Xerostomia Model

  • Choi, Ja-Hyeong;Lee, Jung-Hwa;Kim, Yeon-Hwa;Hyun, Kyung-Yae;Park, Chung-Mu;Lee, Min-Kyung
    • Biomedical Science Letters
    • /
    • v.26 no.2
    • /
    • pp.93-100
    • /
    • 2020
  • Xerostomia is a relatively common oral disease that causes various problems such as pain, discomforted, tissue damage, and infection. When the activity of AQPs, which plays an important role in the microbial channel transmembrane activity in tissues, decreases saliva secretion and the oral cavity dryness occurs. In this study, we observed whether there was a change in tissue through the expression level of AQP-5 in the submandibular gland in the 4-DAMP-induced xerostomia model. First, in order to construct a xerostomia model, 4-DAMP (1 mg/kg) and 20% urethane (0.5 mL/kg) were administered intraperitoneal (i.p.) to experimental animals. To observe the changes in the submandibular gland was excised, H&E staining was performed and protein quantitation analysis was performed using the submandibular tissue to observe the changes in AQP5 protein expression involved in changes in saliva secretion. Also, cinnamaldehyde (5, 12.5, 25 and 50 mg/kg) dissolved in 20% DMSO, in distilled water for each concentration, and then orally administered at a dose of 1 mL for biopsy and protein quantitative analysis. As a result, it was observed that the submandibular tissue, a model of xerostomia was wider than the naïve group. And then western blot analysis, the expression level of AQP5 decreased in the 4-DAMP group compared to the naïve group, and the expression increased in the group administered orally with cinnamaldehyde. Therefore, administration of 4-DAMP resulted in histological changes for xerostomia, and cinnamaldehyde would be a material that can be developed by reducing xerostomia.

Altered Expression of Aquaporins in Rat Submandibular Glands after Parasympathetic Denervation

  • Jung, Ji-Yeon;Byun, Kang-Ok;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.2
    • /
    • pp.97-101
    • /
    • 2003
  • The salivary glands produce 1.5L of fluid per day. As in other exocrine organs, the general mechanism in the salivary glands is that water movement occurs secondary to osmotic driving forces created by active salt transport. Therefore, high water permeability in the salivary glands is expected to have a variety of aquaporin (AQP), a water channel. Although some AQPs have been known to be present in the salivary glands, roles of parasympathetic nerve in AQP expression have not yet been examined. This study was designed to examine the changes of AQPs and extracellular signal-regulated kinase (ERK) in the submandibular glands after parasympathetic denervation. Right chorda-lingual nerve was cut, and each right (experiment) and left (control) submandibular gland was excised at 1, 3, 7, 14, 30 days after denervation. The denervated right submandibular glands were resulted in weight loss and morphologic changes, including cell loss and atrophy, as the time elapsed after parasympathetic denervation increased, whereas there were no histologic alteration in control side. AQP5 which is known to reside in apical membrane and secretory caraliculi of the submandibular acini were gradually underexpressed according, as the time after denervation increased. Expression of AQP4 in submandibular ductal epithelium was down-regulated after denervation. Besides, AQP3 and 8, which is known to be present in basolateral membrane of the glandular acini, were gradually underexpressed after denervation, similar to the pattern of other types. Expression of ERK, a mitogen-activated protein kinase, was downregulated after parasympathetic denervation in the submandibular gland. These results suggest that parasympathetic nervous system regulates the expression of AQPs in salivary glands, and is in part mediated by ERK pathway.

Anti-aging & Skin Hydration Effects of Spore oil Extracted from Ganoderma lucidum (영지버섯에서 추출한 포자오일의 항노화 및 보습 효능)

  • Song, Hwan;Kim, Myun Soo
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.5
    • /
    • pp.232-238
    • /
    • 2020
  • This study evaluated the anti-aging activity with antioxidant, anti-inflammatory and moisture activity of Ganoderma lucidum spore oil(GLS). GLS increased DPPH radical scavenging activity in a dose-dependent manners. Anti-inflammatory assay measured the inhibitory effect of GLS on NO, TNF-α and IL-6 production in LPS-stimulated RAW264.7 cells. As a result GLS inhibited NO and pro-inflammatory cytokine, TNF-α, IL-6 production. Also using human fibroblast cell to the procollagen production analysis and COL1A1 mRNA expression level analysis for defining, and for AQP-3 mRNA expression level analysis, used human keratinocyte cell. GLS increased procollagen production and COL1A1, AQP-3 mRNA expression. Our results suggest that the GLS have potential anti-inflammatory and wrinkle improves, skin moisture effect.

Anti-aging Effect of Agarum cribrosum in UVA-irradiated Normal Human Epidermal Keratinocytes (자외선 조사에 의해 노화된 인간각질형성세포에서 구멍쇠미역 추출물의 항노화 효능)

  • Shim, Joong Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.4
    • /
    • pp.228-233
    • /
    • 2021
  • This research was carried out to investigate the moisturizing effects of Agarum cribrosum extract on normal human epidermal keratinocytes (NHEKs). Moisturizing effects of A. cribrosum extract on NHEKs were measured by quantitative realtime RT-PCR to verify the gene expressions related to skin hydration, hyaluronic acid (HA)-ELISA to detect HA production, and cell viability assays. A. cribrosum extract increased the mRNA levels of the AQP3 and HAS2 genes and HA production in NHEKs. On the other hand, A. cribrosum extract decreased the mRNA level of the KRT1 and KRT10 genes known as differentiated keratinocyte marker in NHEKs. This research showed the moisturizing effects of A. cribrosum extract. The results indicate that A. cribrosum extract can be a potent functional ingredient for skin hydration and anti-aging products. Further study is warranted regarding the use of A. cribrosum extract to develop not only cosmetics but also food and medicine.

Skin Hydration Effect of Jeju Lava Sea Water (제주용암해수의 피부 보습 효과 연구)

  • Lee, Sung Hoon;Bae, Il-Hong;Min, Dae Jin;Kim, Hyoung-June;Park, Nok Hyun;Choi, Ji Hae;Shin, Jin Seob;Kim, Eun Ju;Lee, Hae Kwang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.4
    • /
    • pp.343-349
    • /
    • 2016
  • Many minerals and nutrient salts are abundant in Jeju lava sea water. The objective of this study was to evaluate the skin hydration effects of Jeju lava sea water. The skin barrier serves as a protective barrier that prevents the loss of moisture. The water holding capacity and water transport of the epidermis have been proposed to be important determinants of skin hydration. Jeju lava sea water increased the mRNA expression of filaggrin and caspase-14 which is related to natural moisturizing factor (NMF) formation. Aquaporins 3 (AQP3) are proteins that facilitate the transport of water across cell membranes. Jeju lava sea water increased the mRNA expression and protein expression of AQP3. We employed a skin equivalent model to assess the efficacy of Jeju lava sea water. In a skin equivalent model, Jeju lava sea water increased the CD44 (hyaluronic acid receptor) which is related to skin hydration. From these results, we found out Jeju lava sea water maybe help to skin hydration.

Effect of Oil in Water Nanoemulsion Containing a Mixture of Lactic Acid and Gluconolactone for Skin Barrier Improvement (유산 및 글루코노락톤 혼합물을 함유하는 수중유형 나노에멀젼의 피부장벽개선 효과)

  • Ji-Hye Hong;Young Duck Choi;Gye Won Lee;Young Ho Cho
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.905-914
    • /
    • 2023
  • To evaluate the effectiveness of the skin barrier improvement of lactic acid (LA) and gluconolactone (GL), the expression of filaggrin, loricrin, hyaluronic acid (HA), hyaluronan syhthase-2 (HAS2), and aquaporine-3 (AQP3) in keratinocytes, and the moisture content and transepidermal water loss (TEWL) by clinical trials were evaluated. The expression levels of filaggrin and locricrin, which are the main factors affecting the proper functioning of skin barrier function, and HA, HAS2, and AQP3, which are skin moisturizing-related proteins measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. The results showed that the expression levels of the factors that decreased by H2O2 treatment were significantly increased by LA, GL, and a mixture of LA and GL at the mRNA and protein levels (p<0.05). The nanoemulsion containing a mixture of LA and GL was prepared using the emulsion inversion method, and the average particle size was 299.9 ± 0.287 nm. After measuring the TEWL of nanoemulsion using Vapometer, it was found that TEWL significantly decreased by 15.53% and 26.73% after two weeks and four weeks of product use, respectively, compared to TEWL before product use (p<0.001). Similarly, the skin moisture content of the nanoemulsion significantly increased by 15.40% and 26.59% after two weeks and four weeks of product use, respectively, compared to skin moisture content before product use (p<0.001). Therefore, the skin barrier function and moisturizing effect of a mixture of LA and GL are shown by increasing the moisture content and decreasing the TEWL by increasing the expression of filaggrin, loricrin, HA, HAS2, and AQP3. This suggests the possibility for the development of functional cosmetic ingredients in the future.

Age-dependent expression of ion channel genes in rat

  • Sung-Cherl Jung;Tong Zhou;Eun-A Ko
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.85-94
    • /
    • 2023
  • Ion channels regulate a large number of cellular functions and their functional role in many diseases makes them potential therapeutic targets. Given their diverse distribution across multiple organs, the roles of ion channels, particularly in age-associated transcriptomic changes in specific organs, are yet to be fully revealed. Using RNA-seq data, we investigated the rat transcriptomic profiles of ion channel genes across 11 organs/tissues and 4 developmental stages in both sexes of Fischer 344 rats and identify tissue-specific and age-dependent changes in ion channel gene expression. Organ-enriched ion channel genes were identified. In particular, the brain showed higher tissue-specificity of ion channel genes, including Gabrd, Gabra6, Gabrg2, Grin2a, and Grin2b. Notably, age-dependent changes in ion channel gene expression were prominently observed in the thymus, including in Aqp1, Clcn4, Hvcn1, Itpr1, Kcng2, Kcnj11, Kcnn3, and Trpm2. Our comprehensive study of ion channel gene expression will serve as a primary resource for biological studies of aging-related diseases caused by abnormal ion channel functions.

The Effect of Early Intervention and Rehabilitation in the Expression of Aquaporin-4; and Ultrastructure Changes on Rat's Offspring's Damaged Brain Caused by Intrauterine Infection

  • Kumar, Rajesh;Li, Xiaojie;Kong, Xiangying
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.1
    • /
    • pp.14-21
    • /
    • 2015
  • Objective : To study the effect of early intervention and rehabilitation in the expression of aquaporin-4 and ultrastructure changes on cerebral palsy pups model induced by intrauterine infection. Methods : 20 pregnant Wistar rats were consecutively injected with lipopolysaccharide intraperitoneally. 60 Pups born from lipopolysaccharide group were randomly divided into intervention group (n=30) and non-intervention group (n=30); intervention group further divided into early intervention and rehabilitation group (n=10), acupuncture group (n=10) and consolidate group (n=10). Another 5 pregnant rats were injected with normal saline intraperitoneally; 30 pups born from the normal saline group were taken as control group. The intervention group received early intervention, rehabilitation and acupuncture treatment. The motor functions of all pups were assessed via suspension test and modified BBB locomotor score. Aquaporin-4 expression in brain tissue was studied through immunohistochemical and western-blot analysis. Ultrastructure changes in damaged brain and control group were studied electron-microscopically. Results : The scores of suspension test and modified BBB locomotor test were significantly higher in the control group than the intervention and non intervention group (p<0.01); higher in the intervention group than the non-intervention group (p<0.01). The expression of Aquaporin-4 was lower in intervention and non intervention group than in the control group (p<0.01); also lower in non-intervention group than the intervention group (p<0.01). Marked changes were observed in ultrastructure of cortex and hippocampus CAI in brain damaged group. Conclusion : Early intervention and rehabilitation training can improve the motor function in offspring with brain injury and reduce the expression of aquaporin-4 in damaged brain.