• Title/Summary/Keyword: APAP-induced hepatotoxicity

Search Result 21, Processing Time 0.024 seconds

Effect of Ash Tree Leaf Extract on Acetaminophen-Induced Hepatotoxicity in Mice

  • Jeon, Jeong-Ryae;Choi, Joon-Hyuk
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.752-755
    • /
    • 2006
  • This study was carried out to investigate the effects of ash tree leaf extract (ALE) on acetaminophen (APAP)-induced hepatotoxicity in mice. Hepatoprotective effects were detected by biochemical analysis of hepatic enzymes and histopathological examination of the liver. BALB/c mice were divided into three groups: 'normal' control mice, APAP-treated control mice, and mice pretreated with ALE and treated with APAP. A single dose of APAP markedly increased levels of plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Light micrographs of liver cells stained with hematoxylin and eosin showed that APAP induced severe centrilobular necrosis, degeneration, and infiltration by inflammatory cells. Moreover, APAP caused the numbers of TUNEL-positive hepatocytes to increase and caused glycogen content to decrease as observed by Periodic acid-Schiff stain. However, pretreatment with ALE for 7 days prior to the administration of APAP significantly decreased plasma levels of AST and ALT. Histological findings demonstrated that ALE pretreatment alleviated APAP-induced liver damage, and induced the regeneration of liver tissue and restoration of glycogen. These results indicate that ash tree leaf extract exerts a protective effect against APAP-hepatotoxicity induced injury.

Carnosic acid protects against acetaminophen-induced hepatotoxicity by potentiating Nrf2-mediated antioxidant capacity in mice

  • Guo, Qi;Shen, Zhiyang;Yu, Hongxia;Lu, Gaofeng;Yu, Yong;Liu, Xia;Zheng, Pengyuan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.1
    • /
    • pp.15-23
    • /
    • 2016
  • Acetaminophen (APAP) overdose is one of the most common causes of acute liver failure. The study aimed to investigate the protective effect of carnosic acid (CA) on APAP-induced acute hepatotoxicity and its underlying mechanism in mice. To induce hepatotoxicity, APAP solution (400 mg/kg) was administered into mice by intraperitoneal injection. Histological analysis revealed that CA treatment significantly ameliorated APAP-induced hepatic necrosis. The levels of both alanine aminotransferase (ALT) and aspartate transaminase (AST) in serum were reduced by CA treatment. Moreover, CA treatment significantly inhibited APAP-induced hepatocytes necrosis and lactate dehydrogenase (LDH) releasing. Western blot analysis showed that CA abrogated APAP-induced cleaved caspase-3, Bax and phosphorylated JNK protein expression. Further results showed that CA treatment markedly inhibited APAP-induced pro-inflammatory cytokines TNF-${\alpha}$, IL-$1{\beta}$, IL-6 and MCP-1 mRNA expression and the levels of phosphorylated $I{\kappa}B{\alpha}$ and p65 protein in the liver. In addition, CA treatment reduced APAP- induced hepatic malondialdehyde (MDA) contents and reactive oxygen species (ROS) accumulation. Conversely, hepatic glutathione (GSH) level was increased by administration of CA in APAP-treated mice. Mechanistically, CA facilitated Nrf2 translocation into nuclear through blocking the interaction between Nrf2 and Keap1, which, in turn, upregulated anti-oxidant genes mRNA expression. Taken together, our results indicate that CA facilitates Nrf2 nuclear translocation, causing induction of Nrf2-dependent genes, which contributes to protection from acetaminophen hepatotoxicity.

Ginsenoside Rk1 ameliorates paracetamol-induced hepatotoxicity in mice through inhibition of inflammation, oxidative stress, nitrative stress and apoptosis

  • Hu, Jun-Nan;Xu, Xing-Yue;Li, Wei;Wang, Yi-Ming;Liu, Ying;Wang, Zi;Wang, Ying-Ping
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.10-19
    • /
    • 2019
  • Background: Frequent overdose of paracetamol (APAP) has become the major cause of acute liver injury. The present study was designed to evaluate the potential protective effects of ginsenoside Rk1 on APAP-induced hepatotoxicity and investigate the underlying mechanisms for the first time. Methods: Mice were treated with Rk1 (10 mg/kg or 20 mg/kg) by oral gavage once per d for 7 d. On the 7th d, allmice treated with 250mg/kg APAP exhibited severeliverinjury after 24 h, and hepatotoxicitywas assessed. Results: Our results showed that pretreatment with Rk1 significantly decreased the levels of serum alanine aminotransferase, aspartate aminotransferase, tumor necrosis factor, and interleukin-$1{\beta}$ compared with the APAP group. Meanwhile, hepatic antioxidants, including superoxide dismutase and glutathione, were elevated compared with the APAP group. In contrast, a significant decrease in levels of the lipid peroxidation product malondialdehyde was observed in the ginsenoside Rk1-treated group compared with the APAP group. These effects were associated with a significant increase of cytochrome P450 E1 and 4-hydroxynonenal levels in liver tissues. Moreover, ginsenoside Rk1 supplementation suppressed activation of apoptotic pathways by increasing Bcl-2 and decreasing Bax protein expression levels, which was shown using western blotting analysis. Histopathological observation also revealed that ginsenoside Rk1 pretreatment significantly reversed APAP-induced necrosis and inflammatory infiltration in liver tissues. Biological indicators of nitrative stress, such as 3-nitrotyrosine, were also inhibited after pretreatment with Rk1 compared with the APAP group. Conclusion: The results clearly suggest that the underlying molecular mechanisms in the hepatoprotection of ginsenoside Rk1 in APAP-induced hepatotoxicity may be due to its antioxidation, antiapoptosis, anti-inflammation, and antinitrative effects.

The Relationship between Prohibitin 1 Expression, Hepatotoxicity Induced by Acetaminophen, and Hepatoprotection by S-Adenosylmethionine in AML12 Cells

  • Eunhye Cho;Soohan Jung;Jina Kim;Kwang Suk Ko
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1447-1453
    • /
    • 2022
  • Prohibitin 1 (Phb1) is a pleiotropic protein, located mainly in the mitochondrial inner membrane and involved in the regulation of cell proliferation and the stabilization of mitochondrial protein. Acetaminophen (APAP) is one of the most commonly used over-the-counter analgesics worldwide. However, at high dose, the accumulation of N-acetyl-p-benzoquinone imine (NAPQI) can lead to APAP-induced hepatotoxicity. In this study, we sought to understand the regulation of mRNA expression in relation to APAP and GSH metabolism by Phb1 in normal mouse AML12 hepatocytes. We used two different Phb1 silencing levels: high-efficiency (HE, >90%) and low-efficiency (LE, 50-60%). In addition, the siRNA-transfected cells were further pretreated with 0.5 mM of Sadenosylmethionine (SAMe) for 24 h before treatment with APAP at different doses (1-2 mM) for 24 h. The expression of APAP metabolism-related and antioxidant genes such as Cyp2e1 and Ugt1a1 were increased during SAMe pretreatment. Moreover, SAMe increased intracellular GSH concentration and it was maintained after APAP treatment. To sum up, Phb1 silencing and APAP treatment impaired the metabolism of APAP in hepatocytes, and SAMe exerted a protective effect against hepatotoxicity by upregulating antioxidant genes.

Expression Levels of GABA-A Receptor Subunit Alpha 3, Gabra3 and Lipoprotein Lipase, Lpl Are Associated with the Susceptibility to Acetaminophen-Induced Hepatotoxicity

  • Kim, Minjeong;Yun, Jun-Won;Shin, Kyeho;Cho, Yejin;Yang, Mijeong;Nam, Ki Taek;Lim, Kyung-Min
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.112-121
    • /
    • 2017
  • Drug-induced liver injury (DILI) is the serious and fatal drug-associated adverse effect, but its incidence is very low and individual variation in severity is substantial. Acetaminophen (APAP)-induced liver injury accounts for >50% of reported DILI cases but little is known for the cause of individual variations in the severity. Intrinsic genetic variation is considered a key element but the identity of the genes was not well-established. Here, pre-biopsy method and microarray technique was applied to uncover the key genes for APAP-induced liver injury in mice, and a cause and effect experiment employing quantitative real-time PCR was conducted to confirm the correlation between the uncovered genes and APAP-induced hepatotoxicity. We identified the innately and differentially expressed genes of mice susceptible to APAP-induced hepatotoxicity in the pre-biopsied liver tissue before APAP treatment through microarray analysis of the global gene expression profiles (Affymetrix $GeneChip^{(R)}$ Mouse Gene 1.0 ST for 28,853 genes). Expression of 16 genes including Gdap10, Lpl, Gabra3 and Ccrn4l were significantly different (t-test: FDR <10%) more than 1.5 fold in the susceptible animals than resistant. To confirm the association with the susceptibility to APAP-induced hepatotoxicity, another set of animals were measured for the expression level of selected 4 genes (higher two and lower two genes) in the liver pre-biopsy and their sensitivity to APAP-induced hepatotoxicity was evaluated by post hoc. Notably, the expressions of Gabra3 and Lpl were significantly correlated with the severity of liver injury (p<0.05) demonstrating that these genes may be linked to the susceptibility to APAP-induced hepatotoxicity.

Hepatoprotective and antioxidant effects of Monochoria vaginalis against acetaminophen-induced hepatotoxicity in rats

  • Palani, S.;Raja, S.;Sakthivel, K.;Devi, K.;Kumar, B. Senthil
    • Advances in Traditional Medicine
    • /
    • v.10 no.1
    • /
    • pp.29-36
    • /
    • 2010
  • The present study was aimed to investigate the hepatoprotective and antioxidant activities of ethanol extract from Monochoria vaginalis (250 mg/kg and 500 mg/kg B/W) on acetaminophen (APAP) induced rat hepatic injury. Monochoria vaginalis is a traditional medicinal plant that is commonly used to treat and improve liver conditions in India and other Asian countries. The development of hepatotoxicity induced by APAP is promoted by oxidative stress. APAP treated group significantly (P < 0.01) elevated the serum enzymatic levels like glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, alkaline phosphatase (SALP), total bilirubin and malondialdehyde (MDA), which were restored towards normalization significantly (P < 0.01) thanol extract of yonochoria vagin is (EEMV). In addition, the EEMV significantly (P < 0.01) elevated the decreased level of total protein and antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, glutathione-s-transferase and reduced glutathione. Apart from these, histopathological changes also showed the protective nature of the EEMV against APAP induced hepatic damage in liver tissues. The activity of EEMV at 500 mg/kg B/W was comparable to the standard drug silymarin (25 mg/kg B/W). In conclusion, these data suggest that the EEMV possess hepatoprotective and antioxidant effects against APAP-induced hepatotoxicity and oxidative stress in rats.

Protective Effects of Water Extracts Composed of Adenophora triphylla var. japonica Hara on the Acetaminophen-induced Hepatotoxicity (아세트아미노펜에 의해 유도된 간독성 모델에서 잔대를 주원료로 하는 추출물의 간 보호 효과)

  • Gum, Sang-Il;Lee, Dong-Ung;Cho, Min-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.688-693
    • /
    • 2007
  • The hepatoprotective effects of water extracts composed of Adenophora triphylla var japonica Hara (ATJH) on acetaminophen (APAP)-induced hepatotoxicity were investigated in vivo and in vivo. The effects of ATJH on liver toxicity induced by APAP were assessed by blood biochemical and histopathological analyses. APAP treatment (350 mg/kg) caused severe liver injury in mice as indicated by their significantly elevated plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. Pretreatment with ATJH for 3 or 7 days attenuated the increases in ALT and AST when challenged with APAP. The reductions in viability caused by high dose of APAP (450 mg/kg) in vivo were reversed by pretreatment with ATJH. These protective effects of ATJH against APAP-induced toxicity were consistent with the results from the histopathological examinations. We next examined the effects of ATJH on the gene expression of glutathione S-transferases (GSTs) that detoxify the metabolic intermediates of APAP in H4IIE cells. The hepatic GST protein levels [$\alpha$ class (GSTA2, GSTA3/5)] were significantly elevated in a dose-dependent manner by ATJH treatment. In summary, ATJH is effective at protecting against APAP-induced hepatotoxicity by GST induction, implying that ATJH should be considered a potential chemopreventive agent.

Hepatoprotective Effects of 25 Herbal Formulas in Primary Rat Hepatocytes (한약 처방 25종에 대한 간 보호 효과 비교 연구)

  • Jin, Seong Eun;Jeong, Soo-Jin;Shin, Hyeun-Kyoo;Ha, Hyekyung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.5
    • /
    • pp.617-624
    • /
    • 2013
  • The purpose of this study is to investigate the protective effects of 25 herbal formulas on acetaminophen (APAP) or D-galactosamine (D-GalN)-induced hepatotoxicity in primary rat hepatocytes. Cell viability was measured using by Cell Counting Kit-8. 15 kinds of herbal formulas significantly reversed the cell viabilities of D-GalN-treated rat hepatocytes compared with D-GalN alone (p<0.05). In particular, 9 herbal formulas (Bangpungtongseong-san, Bojungikgi-tang, Galgeun-tang, Gumiganghwal-tang, Guibi-tang, Sagunja-tang, Samsoeum, Pyeongwi-san and Yijin-tang) showed the potent protective effects. However, 8 herbal formula exerted weak protective effects and 2 herbal formula did not exert effects on hepatotoxicity by D-GalN. On APAP-induced hepatotoxicity, 7 kinds of herbal formulas increased the viabilities of hepatocytes compare with APAP alone (p<0.05). These results could be provide a valuable information for the future in vivo or clinical studies to predict the hepatoprotective effects of herbal formulas.

Enhanced Production of Adenosine Triphosphate by Pharmacological Activation of Adenosine Monophosphate-Activated Protein Kinase Ameliorates Acetaminophen-Induced Liver Injury

  • Hwang, Jung Hwan;Kim, Yong-Hoon;Noh, Jung-Ran;Choi, Dong-Hee;Kim, Kyoung-Shim;Lee, Chul-Ho
    • Molecules and Cells
    • /
    • v.38 no.10
    • /
    • pp.843-850
    • /
    • 2015
  • The1hepatic cell death induced by acetaminophen (APAP) is closely related to cellular adenosine triphosphate (ATP) depletion, which is mainly caused by mitochondrial dysfunction. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of low energy status. AMPK regulates metabolic homeostasis by stimulating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. We found that the decrease in active phosphorylation of AMPK in response to APAP correlates with decreased ATP levels, in vivo. Therefore, we hypothesized that the enhanced production of ATP via AMPK stimulation can lead to amelioration of APAP-induced liver failure. A769662, an allosteric activator of AMPK, produced a strong synergistic effect on AMPK Thr172 phosphorylation with APAP in primary hepatocytes and liver tissue. Interestingly, activation of AMPK by A769662 ameliorated the APAP-induced hepatotoxicity in C57BL/6N mice treated with APAP at a dose of 400 mg/kg intraperitoneally. However, mice treated with APAP alone developed massive centrilobular necrosis, and APAP increased their serum alanine aminotransferase and aspartate aminotransferase levels. Furthermore, A769662 administration prevented the loss of intracellular ATP without interfering with the APAP-mediated reduction of mitochondrial dysfunction. In contrast, inhibition of glycolysis by 2-deoxy-glucose eliminated the beneficial effects of A769662 on APAP-mediated liver injury. In conclusion, A769662 can effectively protect mice against APAP-induced liver injury through ATP synthesis by anaerobic glycolysis. Furthermore, stimulation of AMPK may have potential therapeutic application for APAP overdose.