• 제목/요약/키워드: AOX

검색결과 44건 처리시간 0.025초

Pichia pastoris에서 메탄올 유도시 첨가물이 재조합 HBsAg 생산에 미치는 영향 (Effect of Various Additives on the Production of Recombinant HBsAg during Methanol Induction in Pichia pastoris)

  • 이경훈;임상민;김동일
    • KSBB Journal
    • /
    • 제21권4호
    • /
    • pp.260-266
    • /
    • 2006
  • 본 연구에서는 P. pastoris를 이용한 유전자 재조합 HBsAg 생산에서 메탄올 유도시 여러 가지 첨가물들의 영향에 대해서 알아보았다. 회분식 배양에서 탄소원으로 글리세롤을 사용하다가 유가식 배양의 공급 탄소원으로 글리세롤이 아닌 당알콜인 sorbitol로 대체하였을 때 단백질 발현이 향상된 결과를 보였다. 또한 메탄올 유도시에 적당량의 아미노산 혼합물 첨가는 세포증식에는 영향이 없었지만 단백질 발현율은 크게 증가시켰다. 계면활성제인 Trition X-100의 첨가는 세포증식과 단백질 발현을 현저히 감소시켰지만, Pluronic F-68를 첨가했을 경우 세포증식의 저해영향 없이 단백질 발현율을 향상시켰다. 배지 부피의 0.01%(v/v)으로 oleic acid를 첨가하면 플라스크 배양에서는 단백질 발현에 긍정적인 효과를 보였으나, 5 L 발효조 배양에서는 메탄올 유도 시간이 지속되면서 첨가하지 않은 경우에 비해 발현율이 낮아지는 결과를 보였다. 마지막으로 trace salts는 첨가량에 따라 세포증식에는 영향이 없으며 단백질 발현에는 소량 trace salts 첨가로 단백질 발현에 긍정적인 효과를 보였다. 하지만 첨가량이 많아질수록 단백질 발현에는 부정적인 영향을 보임을 확인할 수 있었다.

Antibacterial Activity of Recombinant Pig Intestinal Parasite Cecropin P4 Peptide Secreted from Pichia pastoris

  • Song, Ki-Duk;Lee, Woon-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권2호
    • /
    • pp.278-283
    • /
    • 2014
  • Cecropins (Cec) are antibacterial peptides and their expression is induced in a pig intestinal parasite Ascaris suum by bacterial infection. To explore the usefulness of its activity as an antibiotic, CecP4 cDNA was prepared and cloned into the pPICZ B expression vector and followed by the integration into AOX1 locus in Pichia pastoris. The supernatants from cell culture were collected after methanol induction and concentrated for the test of antimicrobial activity. The recombinant P. patoris having CecP4 showed antimicrobial activity when tested against Staphyllococcus aureus in disc diffusion assay. We selected one of the CecP4 clones (CecP4-2) and performed further studies with it. The growth of recombinant P. pastoris was optimized using various concentration of methanol, and it was found that 2% methanol in the culture induced more antibacterial activity, compared to 1% methanol. We extended the test of antimicrobial activity by applying the concentrated supernatant of CecP4 culture to Pseudomonas aeruginosa and E. coli respectively. Recombinant CecP4 also showed antimicrobial activity against both Pseudomona and E. coli, suggesting the broad spectrum of its antimicrobial activity. After improvements for the scale-up, it will be feasible to use recombinant CecP4 for supplementation to the feed to control microbial infections in young animals, such as piglets.

Cloning of a Gene Encoding Dextranase from Lipomyces starkeyi and its Expression in Pichia pastoris

  • Kang, Hee-Kyoung;Park, Ji-Young;Ahn, Joon-Seob;Kim, Seung-Heuk;Kim, Do-Man
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권2호
    • /
    • pp.172-177
    • /
    • 2009
  • A gene(lsd1) encoding dextranase from Lipomyces starkeyi KSM22 has been previously cloned, sequenced, and expressed in Saccharomyces cerevisiae. The gene consisting of 1,824 base pairs and encoding a protein of 608 amino acids was then cloned into and secretively expressed in Pichia pastoris under the control of the AOX1 promoter. The dextranase productivity of the P. pastoris transformant(pPIC9K-LSD1, 134,000 U/I) was approximately 4.2-fold higher than that of the S. cerevisiae transformant(pYLSD1, 32,000 U/I) cultured in an 8-1 fermentor. Over 0.63 g/l of active dextranase was secreted into the medium after methanol induction. The dextranase of the P. pastoris transformant, as analyzed by SDS-PAGE and Western blotting, showed only one homogeneous band. This dextranase of the P. pastoris transformant showed a broad band near 73 kDa. Rabbit monoclonal antibodies against a synthetic LSD1 peptide mix also recognized approximately 73 kDa.

Expression of Mouse $\alpha-Amylase$ Gene in Methylotrophic Yeast Pichia pastoris

  • Uehara Hiroyuki;Choi Du Bok;Park Enoch Y.;Okabe Mitsuyasu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권1호
    • /
    • pp.7-12
    • /
    • 2000
  • The expression of the mouse $\alpha-amylase$ gene in the methylotrophic yeast, P pastoris was investigated. The mouse $\alpha-amylase$ gene was inserted into the multi-cloning site of a Pichi a expression vector, pPIC9, yielding a new expression vector pME624. The plasmid pME624 was digested with SalI or BglII, and was introduced into P. pastoris strain GSl15 by the PEG1000 method. Fifty-three transformants were obtained by the transplacement of pME624 digested with SaiII or BglII into the HIS4locus $(38\;of\;Mut^+\;clone)$ or into the AOX1 locus $(15\;of\;Mut^s\;clone)$. Southern blot was carried out in 11 transformants, which showed that the mouse $\alpha-amylase$ gene was integrated into the Pichia chromosome. When the second screening was performed in shaker culture, transformant G2 showed the highest $\alpha-amylase$ activity, 290 units/ml after 3-day culture, among 53 transformants. When this expression level of the mouse $\alpha-amylase$ gene is compared with that in recombinant Saccharomyces cerevisiae harboring a plasmid encoding the same mouse $\alpha-amylase$ gene, the specific enzyme activity is eight fold higher than that of the recombinant S. cerevisiae.

  • PDF

Pichia pastoris 유가식 배양을 이용한 재조합 HBsAg 생산에서 sorbitol이 미치는 영향

  • 이경훈;김동일
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2002년도 생물공학의 동향 (X)
    • /
    • pp.247-250
    • /
    • 2002
  • 본 연구에서는 형질전환된 P. pastoris를 이용한 재조합 HBsAg 생산에서 유가식 배양시 공급배치 탄소원으로 sorbitol이 단백질 발현에 미치는 영향을 glycerol과 비교하여 실험하였다. 유가식 배양 공급배지 탄소원으로 50% sorbitol을 이용했을 때 50% glycerol을 이용하는 경우보다 세포 증식 측면에서는 methanal 유도 후 균체 농도가 낮은 경향을 보였으나 이것은 glycerol 이 sorbitol 보다 에너지원으로써 높은 affinity를 가지기 때문인 것으로 판단된다. 하지만 단위 건조 균체량당 단백질 발현량은 50% sorbitol을 공급 한 경우 50% glycerol을 공급한 경우 보다 12% 향상되는 결과를 보였다. 따라서 유가식 배양용 공급 탄소원으로 sorbitol을 이용했을 때 glycerol을 이용하는 것보다 AOX promoter에 의한 단백질 발현에 보다 긍적적인 효과가 있는 것을 확인 할 수 있었다.

  • PDF

Arsenite Oxidation by Bacillus sp. Strain SeaH-As22w Isolated from Coastal Seawater in Yeosu Bay

  • Chang, Jin-Soo;Kim, In-S.
    • Environmental Engineering Research
    • /
    • 제15권1호
    • /
    • pp.15-21
    • /
    • 2010
  • This study was conducted to evaluated seawater bacteria and their seasonal characteristics in the arsenic contaminated coastal seawater of Yeosu Bay, the Republic of Korea. Arsenite-oxidizing bacteria play an important role in the seawater of the arsenic contaminated bay, with a variety of arsenic resistance system (ars) genotypes being present during summer. Specifically, Bacillus sp. strain SeaH-As22w (FJ607342), isolated from the bay, were found to contain the arsB, arrA and aoxR type operons, which are involved in arsenic resistance. The isolated bacteria showed relatively high tolerance to sodium arsenite (III; $NaAsO_2$) at concentrations as high as 50 mM. Additionally, batch seawater experiments showed that Bacillus sp. strain SeaH-As22w completely oxidized 1 mM of As (III) to As (V) within 10 days. Ecologically, the arsenic-oxidizing potential plays an important role in arsenic toxicity and mobility in As-contaminated coastal seawater of Yeosu Bay during all seasons because it facilitates the activity of Bacillus sp. groups.

첨가제가 이산화염소 표백에 미치는 영향

  • 윤병호;왕립군;김세종;김용식;최경화
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 1999년도 춘계학술발표논문집
    • /
    • pp.84-88
    • /
    • 1999
  • In chlorine dioxide delignigication or bleaching, chlorate is mainly formed by the reaction between chlorite and hypochlorous acid, thus scavengers of chlorine or hypochlorous acid can be used to reduce the formation of chlorate which is unfavorable to environment. In this study, additives such as sulfamic acid, DMSO, hydrogen peroxide, or sodium chlorite was added to chlorine solution or pure $ClO_2$ solution to check their reactivity with $Cl_2$ and $ClO_2$. These additives were also added directly into general $ClO_2$ solution which contained certain amount of chlorine, then the additive-treated $ClO_2$ solution were used in bleaching stages. The aim of this procedure was to remove the original amount of chlorine that was thought to be possibly the main reason for the formation of chlorate and AOX. The additives were found to be able to eliminate chlorine very fast and selectively, but $H_2$ $O_2$ should be used under pH4, otherwise it also reacts with $ClO_2$. After the additives reacted With $Cl_2$, DMSO turned into an inactive product $(CH_3)_2SO_2$, While Sulfamic acid turned into $HClSO_3H$ that still remained active in oxidation, and $NaClO_2$ produced $ClO_2$. The addition of $HNaClO_2$ showed significant improvement in delignification but the deeper delignification led to higher formation of chlorate. When the additive-treated chlorine dioxide solutions were used in bleaching, both sulfamic acid, DMSO, and hydrogen peroxide showed no significant changes of DE brightness and Kappa number. The formation of chlorate was reduced by addition of sulfamic acid, DMSO and hydrogen peroxide.

  • PDF

Expression of a Tandemly Arrayed Plectasin Gene from Pseudoplectania nigrella in Pichia pastoris and its Antimicrobial Activity

  • Wan, Jin;Li, Yan;Chen, Daiwen;Yu, Bing;Zheng, Ping;Mao, Xiangbing;Yu, Jie;He, Jun
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권3호
    • /
    • pp.461-468
    • /
    • 2016
  • In recent years, various naturally occurring defence peptides such as plectasin have attracted considerable research interest because they could serve as alternatives to antibiotics. However, the production of plectasin from natural microorganisms is still not commercially feasible because of its low expression levels and weak stability. A tandemly arrayed plectasin gene (1,002 bp) from Pseudoplectania nigrella was generated using the isoschizomer construction method, and was inserted into the pPICZαA vector and expressed in Pichia pastoris. The selected P. pastoris strain yielded 143 μg/ml recombinant plectasin (Ple) under the control of the methanol-inducible alcohol oxidase 1 (AOX1) promoter. Ple was estimated by SDS-PAGE to be 41 kDa. In vitro studies have shown that Ple efficiently inhibited the growth of several gram-positive bacteria such as Streptococcus suis and Staphylococcus aureus. S. suis is the most sensitive bacterial species to Ple, with a minimum inhibitory concentration (MIC) of 4 μg/ml. Importantly, Ple exhibited resistance to pepsin but it was quite sensitive to trypsin and maintained antimicrobial activity over a wide pH range (pH 2.0 to 10.0). P. pastoris offers an attractive system for the cost-effective production of Ple. The antimicrobial activity of Ple suggested that it could be a potential alternative to antibiotics against S. suis and S. aureus infections.

Pichia pastoris에서 Aspergillus ficuum 유래 Acetyl Xylan Esterase 유전자의 과발현 (High-Level Expression of Aspergillus ficuum Acetyl Xylan Esterase Gene in Pichia pastoris,)

  • 임재명;김성구;박승문;남수완
    • 한국미생물·생명공학회지
    • /
    • 제30권4호
    • /
    • pp.305-311
    • /
    • 2002
  • Aspergillus ficuum 유래 acetyl xylan esterase(AXEase) 유전자(AXE)를 Pichia pastoris에서 과발현ㆍ분비 생산하기 위해 AOXI promoter와 mating factor $\alpha$-1 분비신호서열 하류에 AXE를 연결한 염색체 삽입 발현계(pPICZ$\alpha$C-AXE, 4.6 kb)를 구축하였다. 이것을 SacI으로 절단한 뒤 P. pastoris의 염색체 DNA 5'AOX1 부위에 삽입시켰다. 형질전환된 P. pastoris 균주를 메탄을 배지에서 플라스크 회분배양한 결과, 배양 36시간 때의 건조균체농도는 6 g-DCW/1, AXEase 총 발현량은 77 unit/ml이었다. 최적화된 methanol과 histidine 공급방법을 채용한 유가배양시 균체농도는 97 g-DCW/1, AXEase 총발현량은 930 unit/m1로 크게 증가하였다. 효소활성의 90% 이상은 배양 상등액에 존재하였으며, 상등액 단백질의 80%이상이 AXEase 단백질(33.5 kDa)였다. 이러한 결과는 9.8 g/l의 AXEase 단백질을 배양 상등액으로 대량 분비ㆍ생산할 수 있음을 의미한다.

Efficient Expression, Purification, and Characterization of a Novel FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus in Pichia pastoris

  • Yang, Yufeng;Huang, Lei;Wang, Jufang;Wang, Xiaoning;Xu, Zhinan
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권11호
    • /
    • pp.1516-1524
    • /
    • 2014
  • Flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) can utilize a variety of external electron acceptors and also has stricter substrate specificity than any other glucose oxidoreductases, which makes it the ideal diagnostic enzyme in the field of glucose biosensors. A gene coding for a hypothetical protein, similar to glucose oxidase and derived from Aspergillus terreus NIH2624, was overexpressed in Pichia pastoris GS115 under the control of an AOX1 promoter with a level of 260,000 U/l in the culture supernatant after fed-batch cultivation for 84 h. After a three-step purification protocol that included isopropanol precipitation, affinity chromatography, and a second isopropanol precipitation, recombinant FAD-GDH was purified with a recovery of 65%. This is the first time that isopropanol precipitation has been used to concentrate a fermentation supernatant and exchange buffers after affinity chromatography purification. The purified FAD-GDH exhibited a broad and diffuse band between 83 and 150 kDa. The recombinant FAD-GDH was stable across a wide pH range (3.5 to 9.0) with maximum activity at pH 7.5 and $55^{\circ}C$. In addition, it displayed very high thermal stability, with a half-life of 82 min at $60^{\circ}C$. These characteristics indicate that FAD-GDH will be useful in the field of glucose biosensors.