• Title/Summary/Keyword: AOI machine

Search Result 7, Processing Time 0.017 seconds

Unified Approach to Path Planning Algorithm for SMT Inspection Machines Considering Inspection Delay Time (검사지연시간을 고려한 SMT 검사기의 통합적 경로 계획 알고리즘)

  • Lee, Chul-Hee;Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.788-793
    • /
    • 2015
  • This paper proposes a path planning algorithm to reduce the inspection time of AOI (Automatic Optical Inspection) machines for SMT (Surface Mount Technology) in-line system. Since the field-of-view of the camera attached at the machine is much less than the entire inspection region of board, the inspection region should be clustered to many groups. The image acquisition time depends on the number of groups, and camera moving time depends on the sequence of visiting the groups. The acquired image is processed while the camera moves to the next position, but it may be delayed if the group includes many components to be inspected. The inspection delay has influence on the overall job time of the machine. In this paper, we newly considers the inspection delay time for path planning of the inspection machine. The unified approach using genetic algorithm is applied to generates the groups and visiting sequence simultaneously. The chromosome, crossover operator, and mutation operator is proposed to develop the genetic algorithm. The experimental results are presented to verify the usefulness of the proposed method.

Path Planning of Automated Optical Inspection Machines for PCB Assembly Systems

  • Park Tae-Hyoung;Kim Hwa-Jung;Kim Nam
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.96-104
    • /
    • 2006
  • We propose a path planning method to improve the productivity of AOI (automated optical inspection) machines in PCB (printed circuit board) assembly lines. The path-planning problem is the optimization problem of finding inspection clusters and the visiting sequence of cameras to minimize the overall working time. A unified method is newly proposed to determine the inspection clusters and visiting sequence simultaneously. We apply a hybrid genetic algorithm to solve the highly complicated optimization problem. Comparative simulation results are presented to verify the usefulness of the proposed method.

Defect Classification of Components for SMT Inspection Machines (SMT 검사기를 위한 불량유형의 자동 분류 방법)

  • Lee, Jae-Seol;Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.982-987
    • /
    • 2015
  • The inspection machine in SMT (Surface Mount Technology) line detects the assembly defects such as missing, misalignment, loosing, or tombstone. We propose a new method to classify the defect types of chip components by processing the image of PCB. Two original images are obtained from horizontal lighting and vertical lighting. The image of the component is divided into two soldering regions and one packaging region. The features are extracted by appling the PCA (Principle Component Analysis) to each region. The MLP (Multilayer Perceptron) and SVM (Support Vector Machine) are then used to classify the defect types by learning. The experimental results are presented to show the usefulness of the proposed method.

Automatic Classification of SMD Packages using Neural Network (신경회로망을 이용한 SMD 패키지의 자동 분류)

  • Youn, SeungGeun;Lee, Youn Ae;Park, Tae Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.276-282
    • /
    • 2015
  • This paper proposes a SMD (surface mounting device) classification method for the PCB assembly inspection machines. The package types of SMD components should be classified to create the job program of the inspection machine. In order to reduce the creation time of job program, we developed the automatic classification algorithm for the SMD packages. We identified the chip-type packages by color and edge distribution of the images. The input images are transformed into the HSI color model, and the binarized histroms are extracted for H and S spaces. Also the edges are extracted from the binarized image, and quantized histograms are obtained for horizontal and vertical direction. The neural network is then applied to classify the package types from the histogram inputs. The experimental results are presented to verify the usefulness of the proposed method.

PCB Defects Detection using Connected Component Classification (연결 성분 분류를 이용한 PCB 결함 검출)

  • Jung, Min-Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.113-118
    • /
    • 2011
  • This paper proposes computer visual inspection algorithms for PCB defects which are found in a manufacturing process. The proposed method can detect open circuit and short circuit on bare PCB without using any reference images. It performs adaptive threshold processing for the ROI (Region of Interest) of a target image, median filtering to remove noises, and then analyzes connected components of the binary image. In this paper, the connected components of circuit pattern are defined as 6 types. The proposed method classifies the connected components of the target image into 6 types, and determines an unclassified component as a defect of the circuit. The analysis of the original target image detects open circuits, while the analysis of the complement image finds short circuits. The machine vision inspection system is implemented using C language in an embedded Linux system for a high-speed real-time image processing. Experiment results show that the proposed algorithms are quite successful.

Eye Perception Difference Between the Conservative and the Liberal : Verification of Personal Tendency using Eye-tracking Machine

  • Kwon, Mahnwoo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1171-1177
    • /
    • 2021
  • Measuring and evaluation of audience's visual message perception are crucial process for scientific production of visual content. This study tried to evaluate the difference of viewer's awareness of visual object depends on his or her inherent characteristics like conservatism using an eye tracker system. Especially, this experiment tested research questions about positive correlation between conservatism and peoples' eye movements following the sound visual messages. 57 subjects participated in the test. Two different groups were exposed to two visual elements representing 'the conservative' and 'the liberal'. The results showed that people tended to have different way of seeing visual objects according to their inherent characteristics. Also by comparing the gaze time at the object and area of interest(AOI) in visual, this study is able to verify the existence of 'positive way of seeing' and 'negative way of seeing'. The two different ways of seeing have their own trail of eye movement.

Discriminant Analysis of Human's Implicit Intent based on Eyeball Movement (안구운동 기반의 사용자 묵시적 의도 판별 분석 모델)

  • Jang, Young-Min;Mallipeddi, Rammohan;Kim, Cheol-Su;Lee, Minho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.212-220
    • /
    • 2013
  • Recently, there has been tremendous increase in human-computer/machine interaction system, where the goal is to provide with an appropriate service to the user at the right time with minimal human inputs for human augmented cognition system. To develop an efficient human augmented cognition system based on human computer/machine interaction, it is important to interpret the user's implicit intention, which is vague, in addition to the explicit intention. According to cognitive visual-motor theory, human eye movements and pupillary responses are rich sources of information about human intention and behavior. In this paper, we propose a novel approach for the identification of human implicit visual search intention based on eye movement pattern and pupillary analysis such as pupil size, gradient of pupil size variation, fixation length/count for the area of interest. The proposed model identifies the human's implicit intention into three types such as navigational intent generation, informational intent generation, and informational intent disappearance. Navigational intent refers to the search to find something interesting in an input scene with no specific instructions, while informational intent refers to the search to find a particular target object at a specific location in the input scene. In the present study, based on the human eye movement pattern and pupillary analysis, we used a hierarchical support vector machine which can detect the transitions between the different implicit intents - navigational intent generation to informational intent generation and informational intent disappearance.