• Title/Summary/Keyword: ANSYS/LS-DYNA

Search Result 39, Processing Time 0.024 seconds

Explosion Modelling for Crack Propagation near Blast holes in Rock Plate (암석판재에서 발파공 부근 균열전파에 대한 폭원모델링)

  • Choi, Byung-Hee;Kang, Myoung-Soo;Ryu, Chang-Ha;Kim, Jae-Woong
    • Explosives and Blasting
    • /
    • v.33 no.1
    • /
    • pp.13-20
    • /
    • 2015
  • Recently, as the demand for development and utilization of underground space is increasing worldwide, the blast damaged zone has become a major issue in constructing underground structures. In this study, numerical analyses were performed for modelling a small-scale blasting of rock plates using PFC3D and ANSYS LS-DYNA. In order to verify the analysis results, several test blasts were conducted. It is concluded from the study that the numerical modelling methods well simulate the crack propagation procedure near blast holes under given conditions.

Development of HDD Vibration/Shock Simulation Tool for Design Engineers (설계자 전용 HDD 진동/충격해석 프로그램 개발)

  • Kim, J.G.;Lee, J.K.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.46-51
    • /
    • 2009
  • Recently, the shock resistance and dynamic characteristics of hard disk drives have become more important due to their highly increased storage density and miniaturization. In this study, we have developed an ANSYS/Mechanical/LS-DYNA based HDD vibration/shock simulation tool for design engineers. This simulation tool using ANSYS APDL can produce a parametric finite element modeling of HDD automatically and has GUI-based applications using the script program language Tcl/Tk. In the present tool, we adopt the reliable methodology of vibration/shock simulation, which is experimentally verified. It is expected that this simulation tool can make the repetitive computational efforts for the shock-proof design of HDD drastically reduced.

  • PDF

A Method of Explosion Modelling Using the Concept of Momentum Trap (모멘텀 트랩 개념을 이용한 폭원모델링 기법)

  • Choi, Byung-Hee;Kang, Myoung-Soo;Ryu, Chang-Ha;Kim, Jae-Woong
    • Explosives and Blasting
    • /
    • v.33 no.4
    • /
    • pp.7-13
    • /
    • 2015
  • Recently, as the demand for development and utilization of underground space is increasing worldwide, the blast damaged zone has become a major issue in constructing underground structures. In this study, to verify the explosion modelling method for blast-damaged zone (BDZ) around underground cavern, a series of small-scale test blasts was conducted using the concept of momentum trap. According to the test results, the input parameters to the numerical model (ANSYS LS-DYNA) were corrected. It is concluded that the suggested method of miniature blasting and numerical modelling using the MT concept well simulates the velocity of the MT projectile under given conditions.

Dynamic Shock Simulation of Head-gimbal Assembly in Micro MO Drives (초소형 광자기 드라이브용 HGA의 동적 충격 시뮬레이션)

  • 오우석;홍어진;박노철;양현석;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.189-194
    • /
    • 2004
  • As a disk drive becomes widely used in portable environments, one of the important requirements is durability under severe environmental condition, especially, resistance to mechanical shock. An important challenge in the disk recording is to improve disk drive robustness in shock environments. If the system comes In contact with outer shock disturbance, the system gets critical damage in head-gimbal assembly or disk. This paper describes analysis of a HGA(head-gimbal assembly) in micro MO drives to shock loading during both non-operating state and operating state. A finite element model which consists of the disk, suspension, slider and air bearing was used to find structural response of micro MO drives. In the operational case. the air bearing is approximated with four linear elastic springs. The commercially available finite element solver, ANSYS/LS-DYNA, is used to simulate the shock response of the HGA in micro MO drives. In this paper, the mechanical robustness of the suspension is simuiated considering the shock responses of the HGA.

  • PDF

The compression-shear properties of small-size seismic isolation rubber bearings for bridges

  • Wu, Yi-feng;Wang, Hao;Sha, Ben;Zhang, Rui-jun;Li, Ai-qun
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.39-50
    • /
    • 2018
  • Taking three types of bridge bearings with diameter being 100 mm as examples, the theoretical analysis, the experimental research as well as the numerical simulation of these bearings is conducted. Since the normal compression and shear machines cannot be applied to the small-size bearings, an improved equipment to test the properties of these bearings is proposed and fabricated. Besides, the simulation of the bearings is conducted based on the explicit finite element software ANSYS/LS-DYNA, and some parameters of the bearings are modified in the finite element model to reduce the computation cost effectively. Results show that all the research methods are capable of revealing the fundamental properties of the small-size bearings, and a combined use of these methods can better catch both the integral properties and the inner detailed mechanical behaviors of the bearings.

Influence of the Charged Explosives on the Steel Plate Cutting Performance in Bent-Shaped Charge Holder Blasting (드로잉 가공 성형폭약용기를 이용한 강재구조 발파공법에서 사용폭약의 종류가 절단성능에 미치는 영향)

  • Kim, Gyeong-Gyu;Park, Hoon;Min, Gyeong-Jo;Shin, Chan-Hwi;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • As the national economic growth and the rapid increase in industrial structures are aging, the demand for removing steel structures is increasing, and research on improving the penetration performance of the linear shape charge explosives. In the study, numerical analyses were performed on the effect of the type of explosive used in the self-made shape charging container and the initiation method on the cutting performance of the steel plate and the effect on the shaped explosive installed close to it. ANSYS LS-DYNA, which can analyze the large deformation problem of materials due to explosion, was used, and an ALE(Arbitrary-Lagrange-Eulerian) model was applied that enables interlocking analysis of gases, liquids, and solid.

Ship Collision Analysis with Offshore Structure (선박과 해양 구조물의 충돌 해석)

  • Kim, Jong-Sung;Jung, Hyun;Ko, Jae-Yong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.169-176
    • /
    • 2004
  • Offshore structure crossing navigation waterways must not only be designed to resist gravity, wind, and earthquake load, but also be capable of resisting ship and barge collision load. Current specifications for offshore structure design provide empirical relationships for computing impact loads generated during barge collision, however, these relationships are based on the limited experimental data. In this paper, the dynamic finite element analysis is used to computing force for vessel collision scenarios to offshore structures. Results obtained from the ANSYS/LS-DYNA are compared to AASHTO bridge design specifications.

  • PDF

Analysis for Compressor Motor Core Blanking process (Compressor Motor Core 타발 공정 해석)

  • 최철주;조동협;정완진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.199-230
    • /
    • 1994
  • The blanking sequence of refrigerator and air-conditioner compressor-motor-core has been determined by trial and error. To improve such problem, 2d-analysis using ANSYS to verify the deformation state has been done firstly. And 3d-analysis following up the real process has been done. Additionally, verified the 3-d analysis result using S/W LS-DYNA.

IMPACT ANALYSIS OF A WATER STORAGE TANK

  • Jhung, Myung-Jo;Jo, Jong-Chull;Jeong, Sang-Jin
    • Nuclear Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.681-688
    • /
    • 2006
  • This study investigates the dynamic response characteristics of a structure impacted by a high speed projectile. The impact of a 300 kg projectile on a water storage tank is simulated by the general purpose computer codes ANSYS and LS-DYNA. Several methods to simulate the impact are considered and their results are compared. Based upon this, an alternative impact analysis method that is equivalent to an explicit dynamic analysis is proposed. The effect of fluid on the responses of the tank is also addressed.

An Evaluation of Structural Integrity and Crashworthiness of Automatic Guideway Transit(AGT) Vehicle made of Sandwich Composites (샌드위치 복합재 적용 자동무인경전철 차체 구조물의 구조 안전성 및 충돌 특성 평가 연구)

  • Ko, Hee-Young;Shin, Kwang-Bok;Cho, Se-Hyun;Kim, Dea-Hwan
    • Composites Research
    • /
    • v.21 no.5
    • /
    • pp.15-22
    • /
    • 2008
  • This paper describes the results of structural integrity and crashworthiness of Automatic Guideway Transit(AGT) vehicle made of sandwich composites. The applied sandwich composite of vehicle structure was composed of aluminum honeycomb core and WR580/NF4000 glass fabric/epoxy laminate composite facesheet. Material testing was conducted to determine the input parameters for the composite facesheet model, and the effective equivalent damage model fer the orthotropic honeycomb core material. The finite element analysis using ANSYS v11.0 was dont to evaluate structural integrity of AGT vehicle according to JIS E 7105 and ASCE 21-98. Crashworthiness analysis was carried out using explicit finite element code LS-DYNA3D with the lapse of time. The crash condition was frontal accident with speed of 10km/h at rigid wall. The results showed that the structural integrity and crashworthiness of AGT vehicle were proven under the specified loading and crash conditions. Also, the modified Chang-Chang failure criterion was recommended to evaluate the failure modes of composite structures after crashworthiness event.