• Title/Summary/Keyword: ANNs

Search Result 188, Processing Time 0.022 seconds

Possibility Study of Estimating Maximum Depth of Daily Snow Cover by using Algorithm (알고리즘을 이용한 일최심신적설 측정 가능성 연구)

  • Lee, Gun;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.170-170
    • /
    • 2017
  • 본 연구의 목표는 극한 지역의 대비 시스템을 구축하기 위하여 인공 신경망(Artificial Neural Networks)을 이용하여 보다 관측하기 쉬운 기상 인자들로부터 적설량을 실시간 측정 가능성을 제시하는 것이다. 본 연구에서 사용한 데이터베이스는 기상청의 기상자료개방포털에서 사람이 직접 측정한 종관기상관측의 자료다. 이 중에서 일최대 기온, 일최저 기온, 일평균 기온, 강수량을 사용하여 오차를 줄여나가는 최적화방법으로 인공 신경망 시스템을 설계하였다. 설계된 시스템으로 500회 시뮬레이션한 연구 결과는 상관계수가 적설량 측정에 대한 인공 신경망의 크기(노드의 개수)와 관계없이 평균적으로 0.8627인 것을 보여준다. 추가적으로 보조 입력 값인 고도를 사용한 결과, 성능은 좋아졌지만 상관계수의 차이는 평균 0.0044로 미세했다. 또한 Cross-Validation을 통해 기존의 보간법인 Kriging기법과 비교하여 미 관측 지역에서 인공 신경망(ANNs) 사용이 Kriging기법 보다 우수하다는 것을 2차원 Regression's map을 통해 나타냈다. 마지막으로 오차가 크게 발생했을 경우 보안할 수 있는 확률적인 방안을 제시하였다.

  • PDF

Improvement of flood simulation accuracy based on the combination of hydraulic model and error correction model

  • Li, Li;Jun, Kyung Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.258-258
    • /
    • 2018
  • In this study, a hydraulic flow model and an error correction model are combined to improve the flood simulation accuracy. First, the hydraulic flow model is calibrated by optimizing the Manning's roughness coefficient that considers spatial and temporal variability. Then, an error correction model were used to correct the systematic errors of the calibrated hydraulic model. The error correction model is developed using Artificial Neural Networks (ANNs) that can estimate the systematic simulation errors of the hydraulic model by considering some state variables as inputs. The input variables are selected using parital mutual information (PMI) technique. It was found that the calibrated hydraulic model can simulate flood water levels with good accuracy. Then, the accuracy of estimated flood levels is improved further by using the error correction model. The method proposed in this study can be used to the flood control and water resources management as it can provide accurate water level eatimation.

  • PDF

Prediction of bond strength between concrete and rebar under corrosion using ANN

  • Shirkhani, Amir;Davarnia, Daniel;Azar, Bahman Farahmand
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.273-279
    • /
    • 2019
  • Corrosion of the rebar embedded in concrete has a fundamental role in the determination of life and durability of the concrete structures. Researches have demonstrated that artificial neural networks (ANNs) can effectively predict issues such as expected damage in concrete structures in marine environment caused by chloride penetration, the potential of steel embedded in concrete under the influence of chloride, the corrosion of the steel embedded in concrete and corrosion current density in steel reinforced concrete. In this study, data from different kind of concrete under the influence of chloride ion, are analyzed using the neural network and it is concluded that this method is able to predict the bond strength between the concrete and the steel reinforcement in mentioned condition with high reliability.

Estimation of moment and rotation of steel rack connections using extreme learning machine

  • Shariati, Mahdi;Trung, Nguyen Thoi;Wakil, Karzan;Mehrabi, Peyman;Safa, Maryam;Khorami, Majid
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.427-435
    • /
    • 2019
  • The estimation of moment and rotation in steel rack connections could be significantly helpful parameters for designers and constructors in the initial designing and construction phases. Accordingly, Extreme Learning Machine (ELM) has been optimized to estimate the moment and rotation in steel rack connection based on variable input characteristics as beam depth, column thickness, connector depth, moment and loading. The prediction and estimating of ELM has been juxtaposed with genetic programming (GP) and artificial neural networks (ANNs) methods. Test outcomes have indicated a surpass in accuracy predicting and the capability of generalization in ELM approach than GP or ANN. Therefore, the application of ELM has been basically promised as an alternative way to estimate the moment and rotation of steel rack connection. Further particulars are presented in details in results and discussion.

AraProdMatch: A Machine Learning Approach for Product Matching in E-Commerce

  • Alabdullatif, Aisha;Aloud, Monira
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.214-222
    • /
    • 2021
  • Recently, the growth of e-commerce in Saudi Arabia has been exponential, bringing new remarkable challenges. A naive approach for product matching and categorization is needed to help consumers choose the right store to purchase a product. This paper presents a machine learning approach for product matching that combines deep learning techniques with standard artificial neural networks (ANNs). Existing methods focused on product matching, whereas our model compares products based on unstructured descriptions. We evaluated our electronics dataset model from three business-to-consumer (B2C) online stores by putting the match products collectively in one dataset. The performance evaluation based on k-mean classifier prediction from three real-world online stores demonstrates that the proposed algorithm outperforms the benchmarked approach by 80% on average F1-measure.

Application of Artificial Intelligence for the Management of Oral Diseases

  • Lee, Yeon-Hee
    • Journal of Oral Medicine and Pain
    • /
    • v.47 no.2
    • /
    • pp.107-108
    • /
    • 2022
  • Artificial intelligence (AI) refers to the use of machines to mimic intelligent human behavior. It involves interactions with humans in clinical settings, and augmented intelligence is considered as a cognitive extension of AI. The importance of AI in healthcare and medicine has been emphasized in recent studies. Machine learning models, such as genetic algorithms, artificial neural networks (ANNs), and fuzzy logic, can learn and examine data to execute various functions. Among them, ANN is the most popular model for diagnosis based on image data. AI is rapidly becoming an adjunct to healthcare professionals and is expected to be human-independent in the near future. The introduction of AI to the diagnosis and treatment of oral diseases worldwide remains in the preliminary stage. AI-based or assisted diagnosis and decision-making will increase the accuracy of the diagnosis and render treatment more precise and personalized. Therefore, dental professionals must actively initiate and lead the development of AI, even if they are unfamiliar with it.

Computer Science Research Ideas Generation Using Neural Networks

  • Maghraby, Ashwag;Assaeed, Joanna
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.127-130
    • /
    • 2022
  • The number of published journals, conferences, and research papers in computer science is increasing rapidly, which has led to a challenge in coming up with new and unique ideas for research. To alleviate the issue, this paper uses artificial neural networks (ANNs) to generate new computer science research ideas. It does so by using a dataset collected from IEEE published journals and conferences to train an ANN model. The results reveal that the model has a 14% success rate in generating usable ideas. The outcome of this paper has implications for helping both new and experienced researchers come up with novel research topics.

AN ARTIFICIAL NEURAL NETWORK MODEL FOR THE CONDITION RATING OF BRIDGES

  • Jaeho Lee;Kamal Sanmugarasa;Michael Blumenstein
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.533-538
    • /
    • 2005
  • An outline of an Artificial Neural Network (ANN) model for bridge condition rating and the results of a pilot study are presented in this paper. Most BMS implementation systems involve an extensive range of data collection to operate accurately. It takes many years to effectively implement a BMS using existing methodologies. This is due to unmatched data requirements. Such problems can be overcome by adopting the ANN model presented in this paper. The objective of the proposed model is to predict bridge condition ratings using historical bridge inspection data for effective BMS operation.

  • PDF

Multiple Switches Open-Fault Diagnosis Using ANNs of Two-Step Structure for Three-Phase PWM Converters (Two-Step 구조의 인공신경망을 이용한 3상 PWM 컨버터의 다중 스위치 개방고장 진단)

  • Kim, Won-Jae;Kim, Sang-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.282-283
    • /
    • 2020
  • 3상 컨버터에서 스위치의 개방고장이 발생한 경우 고장 전류에 직류 및 고조파 성분이 발생할 수 있으며, 보호회로에 의한 고장 감지가 어려우므로 주변 기기에 2차 고장이 발생할 수 있다. 단일 및 이중 스위치 개방고장의 경우 21가지 고장 모드가 존재한다. 본 논문에서는 이러한 고장 모드를 진단하기 위해 정지 좌표계 d-q축 전류의 직류 및 고조파 성분을 활용하는 two-step 구조의 ANN(Artificial Neural Network)을 제안한다. 고장 시에 발생된 직류 및 고조파 성분 전류는 ADALINE(Adaptive-Linear Neuron)을 통해 얻는다. 고장 진단의 첫 번째 단계에서는 직류 성분을 기반으로 ANN을 이용하여 고장모드를 6개 영역으로 분류한다. 두 번째 단계에서는 6개의 각 영역에서 직류 성분과 전류의 THD(Total Harmonics Distortion)를 기반으로 ANN을 이용하여 개방고장이 발생한 스위치를 진단한다. 제안된 Two-step 방법으로 고장을 진단하므로써 간단한 구조로 ANN의 설계가 가능하다. 3.7kW급 3상 PWM 컨버터로 실험을 통해 제안된 방법의 효용성을 검증하였다.

  • PDF

Channel modeling based on multilayer artificial neural network in metro tunnel environments

  • Jingyuan Qian;Asad Saleem;Guoxin Zheng
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.557-569
    • /
    • 2023
  • Traditional deterministic channel modeling is accurate in prediction, but due to its complexity, improving computational efficiency remains a challenge. In an alternative approach, we investigated a multilayer artificial neural network (ANN) to predict large-scale and small-scale channel characteristics in metro tunnels. Simulated high-precision training datasets were obtained by combining measurement campaign with a ray tracing (RT) method in a metro tunnel. Performance on the training data was used to determine the number of hidden layers and neurons of the multilayer ANN. The proposed multilayer ANN performed efficiently (10 s for training; 0.19 ms for prediction), and accurately, with better approximation of the RT data than the single-layer ANN. The root mean square errors (RMSE) of path loss (2.82 dB), root mean square delay spread (0.61 ns), azimuth angle spread (3.06°), and elevation angle spread (1.22°) were impressive. These results demonstrate the superior computing efficiency and model complexity of ANNs.