• Title/Summary/Keyword: ANNUAL MEAN TEMPERATURE

Search Result 348, Processing Time 0.032 seconds

Seasonal Variation Characteristics of Zostera marina L. in HAENAM SAGUMI on the Southern Coast of Korea (해남 사구미 연안 거머리말(Zostera marina L.)의 계절특성)

  • Ok, Jae Seung;Lee, Sang Yong;Shin, Kyung Hoon;Kim, Hi Joong
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.513-523
    • /
    • 2013
  • This ecological study was conducted to analyze seasonal variation characteristics of Zostera marina at HAENAM SAGUMI on the Southern Coast of Korea. Environmental characteristics, plant morphological characteristics, shoot density, biomass, and leaf production were monitored from August 2008 to March 2011. Zostera marina occurred in the subtidal zone from 0 to 2.5 m below the mean low water level. Water temperature showed a clear annual pattern, with increase in spring and summer, and decreases in fall and winter. Irradiance showed seasonal variation, even though daily weather condition has short-term variation in the incident irradiation. Plant morphological characteristics, shoot density, biomass, and leaf production showed clear seasonal variation. Seasonal variation in the above biomass of Zostera marina was mainly caused by changes in shoot length. We found that there are correlations between environmental characteristics (water temperature, irradiation) and the growth of Zostera marina. There is stronger correlation between water temperature and the growth of Zostera marina, compared to the correlation between irradiation and the growth of Zostera marina. In particular, the growth of Zostera marina is inhibited by both higher and lower water temperature.

Climatic Factors Affecting Bud Flush Timing of Pinus densiflora Provenances (소나무 산지의 개엽시기에 영향을 미치는 기후인자)

  • Kim, In Sik;Ryu, Keun Ok;Lee, Joo Whan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.229-235
    • /
    • 2012
  • This study was conducted to investigate the climatic factors affecting bud phenology of Pinus densiflora provenances. Data were collected from Jungseon, Chungju and Jeju plantations which were parts of the 11 provenance trials established by Korea Forest Research Institute in 1996. The 36 provenances were included in this trial ($33^{\circ}30^{\prime}{\sim}38^{\circ}08^{\prime}$ in latitude and $126^{\circ}30^{\prime}{\sim}129^{\circ}20^{\prime}$ in longitude). The bud swelling date and bud burst date of the provenances were investigated from March to May in 2004 in two-day interval. The four geographic factors and fifteen climatic factors of the test sites and provenances were considered in this study. Canonical correlation analysis was conducted to examine the major factors affecting the bud phenology. Our results suggested that the major factors affecting the timing of bud swelling and burst are the differences in latitude, longitude, extremely low temperature (during December-February), extremely high temperature (during November-February) and annual mean growing days between test plantation and provenance. The provenances with lower winter temperature than that of plantation showed the faster bud swelling and bud burst. Based on these results, the implication on the seed transfer of P. densiflora was discussed.

Annual Variations of Litterfall Production in a Broadleaved Deciduous Forest at the Mt. Keumsan LTER Site (금산 장기생태연구 조사지 낙엽활엽수림 낙엽낙지량의 연변동)

  • Kim, Choonsig;Lim, Jong Hwan;Lee, Im Kyun;Park, Byung Bae;Chun, Jung Hwa
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.2
    • /
    • pp.210-215
    • /
    • 2013
  • Litterfall production represents a major contribution of carbon and nutrient cycling in forest ecosystems. This study was carried out to determine the litterfall production in a broadleaved deciduous forest at the Mt. Keumsan Long Term Ecological Research (LTER) site, Southern Korea. Littefall was collected monthly or bimonthly from the site for 7 years from 2004 to2010. Leaf and reproductive (catkins) litters showed a seasonal variation, but litters of needle, branch, and barks were not changed across the seasons. Annual leaf litter of Quercus serrata and Carpinus laxiflora were significantly different (p<0.05) but that of C. cordata, Chamaecyparis obtusa, and Pinus thunbergii was not significantly changed for 7 years (p>0.05). Annual average litterfall production was 5,223 kg/ha, but annual variations were very large with minimum of 4,110 kg/ha/yr in 2004 and maximum of 6,002 kg/ha/yr in 2007. Total litterfall comprised of 2,323 kg/ha/yr in Q. serrata, 442 kg/ha/yr in C. laxiflora, 157 kg/ha/yr in C. cordata, 131 kg/ha/yr in Acer pseudosieboldianum, 390 kg/ha/yr in other deciduous tree species, 74 kg/ha/yr in P. thunbergii, 37 kg/ha/yr in C. obtusa, 672 kg/ha/yr in branches, 515 kg/ha/yr in miscellaneous, 448 kg/ha/yr in reproductive parts, and 54 kg/ha/yr in barks. respectively. The results indicate that litterfall production of the Mt. Keumsan LTER site was yearly fructurated with the positive linear relationship between leaf or total litterfall and annual mean temperature if no disturbance such as a typoon, and was lower than that of other Korean LTER sites.

Survey on Lake Environments in the Yeongsan and Seomjin River Basins - Based on 10 lakes such as Hadong and Sangsa - (영산강·섬진강수계 호소환경조사 - 하동호 등 10개 호소 중심으로 -)

  • Kim, Shin-Jo;Song, Hyo-Jeong;Park, Tae-Jin;Hwang, Moon-Young;Cho, Hang-Soo;Song, Kwang-Duck;Lee, Hyung-Jin;Kim, Young-Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.665-679
    • /
    • 2015
  • Yearly mean temperature in the 29 lakes surveyed ranges from 12.6 (Suncheon) to 13.9℃ (Mokpo), the lowest in −2.7℃ (January) and the highest in 25.9℃ (July). Monthly mean the amount of rainfall recorded the highest of 336.7 mm in August and the lowest with 4.9 mm in January. A total of 424 species of phytoplankton were identified. They were 157 Chlorophyceae, 161 Bacillariophyceae, 39 Cyanophyceae, and 67 other algal taxa. The phytoplankton diversity were low in stream type reservoirs such as Guemho, Youngsan and Youngam. The population density of phytoplankton ranged from 19 to 53,161 cells/ml. Annual mean of total zooplankton abundance in 45 sites was 369±827 ind./L (n=180). Rotifers were the most common taxa and their relative abundance was high (65~77%). The benthic microinvertebrate fauna of 10 reservoirs of Jeonnam province were 71 species of 61 genera of 44 families of 16 orders of 7 classes of 4 phyla. Aquatic insects of Phylum Arthropoda were 50 species of 44 genera of 28 families of 6 orders. The number of individuals was 6,132. Diptera was highiest (41.3%), and Ephemeroptera (31.0%), Trichoptera (17.5%), Anellida (3.8%), Mollusca (3.3%), Crustacea (0.4%). Large hydrophytes were identified 32 taxa, 2 varieties 30 species 26 genera and 20 families. Especially, Jijung and Juam lakes require management such as physical remove of this ecosystem disturbance field plants. Fishes were identified total 44 taxa, such as 25 Cyprinidae (56.8%), 8 Cobitidae (17.0%), 3 Gobiidae (6.4%), 2 Bagridae (4.3%), 2 Osmeridae (4.3%), 2 Odontobutidae (4.3%), 2 Centrachidae (4.3%), 1 Siluridae (2.1%), and 1 Centropomidae (2.1%). A pale chub was dominant species (18.9%).

The Characteristics on the Spatio-temporal Distributions of Phytoplankton Communities in Deukryang Bay, Southwestern Korea (득량만 식물플랑크톤 군집의 시.공간적 분포특성.)

  • 윤양호
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.4
    • /
    • pp.481-492
    • /
    • 1999
  • The observations on the spatio-temporal distribution and seasonal fluctuations of phytoplankton community were carried out in Deukryang Bay of the Korean Southwestern Sea from June 1992 to April 1993. A total of 75 species of phytoplankton belonged to 47 genera was identified. In Deukryang Bay seasonal succession in dominant species; P. alata, G. flaccida, S. costatum, L. danicus and N. longissima in summer, St. palmeriana, Ch. curvisetus and B. paxillifera in autunm, S. costatum, Ch. curvisetus, E. zodiacus and Pn. pungens in winter, and As. glacialis, As. kariana, N. pelagica, Th. nitzschioides and S. costatum in spring, were very marked, that is to say, the communities structure of phytoplankton in Deukryang Bay appeared to be various species composition and it was occupied with diatoms all the year round. Phytoplankton standing crops fluctuated with an annual mean of $1.4{\times}10^5 cells/1 between the lowest value of 2.6{\times}10^3 cells/1 in July and the highest value of 1.0{\times}10^6 cells/1$ by S. costatum in January. Densities of the phytoplankton cell number by the samples of Deukryang Bay ranged from $2.6{\times}10^3cells/1 to 1.2{\times}10^5 cells/1 with the mean value of 3.6{\times}10^4cells/1 in summer, from 6.0{\times}10^3cells/1 to 2.6{\times}10^5 cells/1 with mean of 1.5{\times}10^5 cells/1 in autumn, from 1.3{\times}10^4cells/1 to 1.0{\times}10^6 cells/1 with mean 3.5{times}10^5 cells/1 in winter, and from 4.8{\times}10^3cells/1 to 6.0{\times}10^5 cells/1 with mean of 1.6{\times}10^5 cells/1$ in autumn. That is to say, phytoplankton standing crops was large in low temperature seasons, on the other hand small in high temperature seasons. Chlorophyll $\alpha$ concentration fluctuated between 0.l9 $\mu$g/l and 12.3 $\mu$g/l in March. in Deukryang Bay seasonal flucturation in chi-$\alpha$ concentration was not marked. Especially, chl-$\alpha$ concentration in the water around Deukryang Island located in the middle part of Deukryang Bay showed patchy distributions with a very high concentration. And chl-$\alpha$ concentration was high during a year. Therefore, phytoplankton production in Deukryang Bay could be very high year-round.

  • PDF

Evaluation of Vegetative Growth in a Mature Stand of Korean Pine under Simulated Climatic condition (복원된 국지기후에 근거한 잣나무 성숙임분의 영양생장에 미치는 국지기후의 영향)

  • 김일현;신만용;김영채;전상근
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.2
    • /
    • pp.105-113
    • /
    • 2001
  • This study was conducted to reveal the effects of local climatic conditions on the vegetative growth in a mature stand of Korean white pine based on climatic estimates. For this, the annual increments of stand variables such as DBH, height, basal area and volume were measured and estimated for seven years from 1974 to 1980. The local climatic conditions in the study site were also estimated by both a topoclimatological method and a spatial statistical technique. The local climatic conditions were then correlated with and regressed on the growth factors to reveal the relationships between the climatic estimates and the growth. It is found that relatively high temperatures had positive effects on the diameter growth. The yearly diameter growth increased when each of mean, maximum, and minimum temperature during the growing season was high. Height growth showed positively significant correlation with three climatic variables. The most important variable influencing height growth was the average of maximum temperature for 10 months from January to October. It means that the higher the average of maximum temperature for 10 months from January to October is, the more height growth of Korean white pine increases. Other climatic variables related to height growth were average of minimum temperature for 3 months in the early growing season and mean relative humidity for the growing season. Six climatic variables related to temperature had effects on basal area increment and all of them were positively correlated with basal area increment. Especially, temperatures from January to March were important factors affecting the basal area increment. In volume increment, high correlation was also recognized with most of temperature variables. This tendency was the same as the results in diameter and hight increments. This means that the volume growth increases when temperatures during the growing season are relatively high.

  • PDF

Abundance and Biomass of Macroinvertebrate Association in a First Order Stream at Mt. Jumbong, Kangwon-do (점봉산의 한 일차하천에 서식하는 대형무척추동물의 풍부도와 현존량)

  • Chung, Keun
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.1-10
    • /
    • 2005
  • Macroinvertebrates from a first order stream at Mt Jumbong, Kangwon-do, was examined for their abundance and biomass. Sampling was done by using a pipe sampler (${\phi}$ 20 cm) for 11occasions (n = 5) at 4${\sim}$6 weeks intervals during November 1997 through October 1998. Water temperature and electronic conductivity of the study stream ranged $0\;{\sim}\;14^{\circ}C$ and 15${\sim}$25 ${\mu}s$/cm, respectively. During the study, 53 insect taxa and 3 non-insect taxa were collected. Annual mean number of individuals (${\pm}$1 SD) was 77741${\pm}$69232${\cdot}$m$^{-2}$ ${\cdot}$yr$^{-1}$, being high in winter (${\pm}$1 SD) (December: 171178${\pm}$130468 $m^{-2}$) and low in summer (${\pm}$ 1 SD) (June: 29872${\pm}$13078 $m^{-2}$). Non-predatory subfamilies of Chironomidae and Nemoura sp. occupied 53.3% and 21.8% of annual abundance. Annual mean biomass was 10g${\cdot}$m$^{-2}$${\cdot}$yr$^{-1}$ in ash free dry weight (AFDW), being high in late winter (February: 16 gAFDW $m^{-2}$.) and low in summer (June: 3 gAFDW $m^{-2}$). Gammarus sp. represented 39.8% of the total biomass and was followed by non-predatory subfamilies of Chironomidae (15.2%) and Hydatohylax sp. (8.5%, Limnephilidae: Trichoptera). Since the non-predatory subfamilies of chironomidae were composed of many species, Nemoura sp. was the most abundant taxon. However, Cammarus sp. was surely the most important taxon to the functional aspects of this first order stream ecosystems.

Physico-Chemical Environment and Productivity of the Phytoplankton Community in the Jido Pond Ecosystem (지도지생태계의 물리화학적환경과 식물성 플랭크톤군집의 생산성)

  • Song Seung-Dal;M. Anwarul Huque
    • Journal of environmental and Sanitary engineering
    • /
    • v.5 no.2
    • /
    • pp.117-122
    • /
    • 1990
  • The Jido Pond system was investigated from April, 1979 through March, 1980, in respect of seasonal changes in physico-chemical factors: i.e., temperature, pH, DO, BOD, COD, $Cl^-, \; Mg^{++}$, alkalinity, detergent, $SiO_2, PO_4\;^{3-}, NH_4\;^+, NO_2\;^-, NO_3\;^-$, total N, OM and OC; phytoplankton community growth; and the ecosystem metabolism. The phytoplankton community was represented by 23 species belonging to Chlorophyta, Bacillariophyta and Cyanophyta; each sharing 11, 9 3 respectively. The Chlorophyceans dominated the phytoplankton community contributing 75% of the total ?미 counts. The ranges of biotic diversity indices were, d, 0.85~2.80; H, 1.10~2.40; c, 0.13~0/40; and 3, 0.56~0.90. The chlorophyll standing crop varied in between 0.043 and 0.385g/$\textrm{cm}^2$ surface area. The ranges of photosynthetic and respiratory rates were 0.36~4.50; and 0.10~1.40 $O_2$ mg/1/hr, respectively. The monthly areal net primary production varied from 23.9 to 305.1C g/$\textrm{m}^2$/month. The Eu of the net production seasonally varied in between 0.31 and 7.80%, and the annual mean was 2.44%. The annual turnover times of phosphorus and nitrogen were 20 and 3 days, respectively.

  • PDF

Spatio-temporal Distribution of Phytoplankton Community in the Jangsu Bay and Adjoining Sea of South Sea, Korea (장수만 식물플랑크톤 군집의 시.공간적 분포 특성)

  • Yoon, Yang Ho
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.1
    • /
    • pp.75-87
    • /
    • 2014
  • This study describes about the spatio-temporal distributions in phytoplankton community such as species composition, standing crop and dominant species from May 2006 to February 2007 in the Jangsu bay and the northwestern parts of Gamak bay. Based on the principal component analysis (PCA) of the environmental factors as well as biological parameters, the bio-oceanographical characteristics were analysed. A total of 83 species of phytoplankton belonging to 47 genera were identified. Whereas diatoms and dinoflagellates occupied more than 65% and 30% of total species, respectively. The annual dominant species were Chaetoceros affinis, Paralia sulcata and Bacillaria paxillifera in spring, Chaetoceros didymus, Ch. affinis and Octactis octonaria in summer, Skeletonema costatum-like species and B. paxillifera in autumn. Moreover phytoplankton cell density was ranged between 3.1 $cells{\cdot}mL^{-1}$ in spring and 521.0 $cells{\cdot}mL^{-1}$ in winter. It fluctuated with an annual mean of 76.0 $cells{\cdot}mL^{-1}$ between the lowest value of 7.6 $cells{\cdot}mL^{-1}$ in spring and the highest value of 220.2 $cells{\cdot}mL^{-1}$ by Skeletonema costatum-like species in winter. Briefly, the phytoplankton cell density in the mixing seasons was higher in comparison with the other seasons. According to the PCA, the biological oceanographic characteristics of the Jangsu bay was affected by the introduction of outside seawater particularly in temperature increasing seasons, and the other seasons, it may be described the light intensity, and mix between inner and outer bay sea waters.

Variability of Contribution of Picophytoplankton in the Phytoplankton Community in the Southwestern East Sea (가을철 동해 남서부해역 초미소식물플랑크톤의 전체 식물플랑크톤 생체량에 대한 기여도 변동성)

  • PARK, MI OK;LEE, YE JI
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.3
    • /
    • pp.77-87
    • /
    • 2017
  • Picophytoplankton, an important primary producer especially at the oligotrophic region, is known to contribute a significant portion of the total phytoplankton biomass in the East Sea of Korea. During autumn in the southwestern East Sea, frequent upwellings and oligotrophic conditions occur and annual variation of primary productivity is known to be significant. Moreover sea surface temperature (SST) of the East Sea is steeply increasing compared to global average increase, so various changes in marine ecosystem related with increase of SST are reported. Taking such circumstances into consideration, we measured the contribution from picophytoplankton fraction to total phytoplankton composition by size fraction of phytoplankton biomass during the autumn seasons from 2011, 2013 and 2015 and examined the variation of the phytoplankton composition. As a result of size fraction analyses, we found that the variation of contribution from picophytoplankton(<$3{\mu}m$) to total community of phytoplankton was high and the average fractions of picophytoplankton were measured as 38% (2011), 59% (2013), 7% (2015), respectively. The difference between measured SST and annual mean SST (${\Delta}T$) was highest ($+1.6^{\circ}C$) in autumn of 2013 and lowest ($-0.9^{\circ}C$) in autumn of 2015. The close positive correlation between ${\Delta}SST$ and fraction of picophytoplankton was confirmed($R^2$ > 0.9). The increase in SST at the southern East Sea was confirmed as one of the main environmental factors in the increase in the increase of the contribution from picophytoplankton. Monitoring of changes in the community structure of primary producers and the influences of the environmental factors including SST in the East Sea is necessary to understand the interactions of ecosystem of the East Sea and the climate change in the near future.