• 제목/요약/키워드: ANN model

검색결과 838건 처리시간 0.027초

분포형 모형과 인공신경망을 활용한 유출 예측 (Run-off Forecasting using Distributed model and Artificial Neural Network model)

  • 김원진;이용관;정충길;김성준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.35-35
    • /
    • 2019
  • 본 연구에서는 분포형 수문 모형 Drying Stream Assessment Tool and Water Flow Tracking (DrySAT-WTF)을 활용해 우리나라의 1976년부터 2015년까지의 유출량을 산정하고, 이를 다층퍼셉트론(Multi Layer Perceptron) 인경신경망 모형(Artificial Neural Network Model)에 적용해 미래 유출을 예측하였다. DrySAT-WFT은 전국 표준 유역을 대상으로 하천 건천화 원인 추적 및 평가를 위해 개발된 모형으로 유출모의를 위한 기상자료 외에 건천화 영향 요소를 고려하기 위한 산림 높이, 도로망, 지하수 이용량, 토지이용, 토심 변화에 대한 DB를 적용 가능한 것이 특징이다. DrySAT-WFT를 위한 기상자료로 모의 기간에 대한 일별 강우량, 상대습도, 평균풍속, 평균 및 최고, 최저 기온, 일조시간을 구축하였으며, 연대별 건천화 영향 요소 DB를 구축하여 적용하였다. 전국 다목적 댐 보 12지점의 유량을 활용해 모형의 보정(2005-2010) 및 검증(2011-2015)을 실시한 결과, 평균 결정계수(Coefficient of determination, $R^2$)는 0.76, 모형효율성계수(Nash-Sutcliffe efficiency, NSE)는 0.62, 평균제곱근오차(average root mean square error, RMSE)는 3.09로 신뢰성 있는 유출 모의 결과를 나타내었다. 미래 유출량 예측을 위한 MLP-ANN은 1976년부터 2015년까지의 유출 모의 결과를 Training Set으로 훈련하여 $R^2$가 0.5 이상이 되어 신뢰성을 확보하였고, 2016년부터 2018년까지의 기간을 1개월 단위로 실제 유출량과 예측 유출량을 비교하며 적용성을 검증 및 향상시켰다.

  • PDF

AI 컴포넌트 추상화 모델 기반 자율형 IoT 통합개발환경 구현 (Implementation of Autonomous IoT Integrated Development Environment based on AI Component Abstract Model)

  • 김서연;윤영선;은성배;차신;정진만
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.71-77
    • /
    • 2021
  • 최근 이질적인 하드웨어 특성을 고려한 IoT 응용 지원 프레임워크의 효율적인 프로그램 개발이 요구되고 있다. 또한, 인간의 뇌를 모사하여 스스로 학습 및 자율적 컴퓨팅이 가능한 뉴로모픽 아키텍처의 발전으로 하드웨어 지원의 범위가 넓어지고 있다. 하지만 기존 대부분의 IoT 통합개발환경에서는 AI(Artificial Intelligence) 기능을 지원하거나 뉴로모픽 아키텍처와 같은 다양한 하드웨어와 결합된 서비스 지원이 어렵다. 본 논문에서는 2세대 인공 신경망 및 3세대 스파이킹 신경망 모델을 모두 지원하는 AI 컴포넌트 추상화 모델을 설계하고 제안 모델 기반의 자율형 IoT 통합개발환경을 구현하였다. IoT 개발자는 AI 및 스파이킹 신경망에 대한 지식이 없어도 제안 기법을 통해 자동으로 AI 컴포넌트를 생성할 수 있으며 런타임에 따라 코드 변환이 유연하여 개발 생산성이 높다. 제안 기법의 실험을 진행하여 가상 컴포넌트 계층으로 인한 변환 지연시간이 발생할 수 있으나 차이가 크지 않음을 확인하였다.

Multi Label Deep Learning classification approach for False Data Injection Attacks in Smart Grid

  • Prasanna Srinivasan, V;Balasubadra, K;Saravanan, K;Arjun, V.S;Malarkodi, S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.2168-2187
    • /
    • 2021
  • The smart grid replaces the traditional power structure with information inventiveness that contributes to a new physical structure. In such a field, malicious information injection can potentially lead to extreme results. Incorrect, FDI attacks will never be identified by typical residual techniques for false data identification. Most of the work on the detection of FDI attacks is based on the linearized power system model DC and does not detect attacks from the AC model. Also, the overwhelming majority of current FDIA recognition approaches focus on FDIA, whilst significant injection location data cannot be achieved. Building on the continuous developments in deep learning, we propose a Deep Learning based Locational Detection technique to continuously recognize the specific areas of FDIA. In the development area solver gap happiness is a False Data Detector (FDD) that incorporates a Convolutional Neural Network (CNN). The FDD is established enough to catch the fake information. As a multi-label classifier, the following CNN is utilized to evaluate the irregularity and cooccurrence dependency of power flow calculations due to the possible attacks. There are no earlier statistical assumptions in the architecture proposed, as they are "model-free." It is also "cost-accommodating" since it does not alter the current FDD framework and it is only several microseconds on a household computer during the identification procedure. We have shown that ANN-MLP, SVM-RBF, and CNN can conduct locational detection under different noise and attack circumstances through broad experience in IEEE 14, 30, 57, and 118 bus systems. Moreover, the multi-name classification method used successfully improves the precision of the present identification.

A Systems Engineering Approach to Predict the Success Window of FLEX Strategy under Extended SBO Using Artificial Intelligence

  • Alketbi, Salama Obaid;Diab, Aya
    • 시스템엔지니어링학술지
    • /
    • 제16권2호
    • /
    • pp.97-109
    • /
    • 2020
  • On March 11, 2011, an earthquake followed by a tsunami caused an extended station blackout (SBO) at the Fukushima Dai-ichi NPP Units. The accident was initiated by a total loss of both onsite and offsite electrical power resulting in the loss of the ultimate heat sink for several days, and a consequent core melt in some units where proper mitigation strategies could not be implemented in a timely fashion. To enhance the plant's coping capability, the Diverse and Flexible Strategies (FLEX) were proposed to append the Emergency Operation Procedures (EOPs) by relying on portable equipment as an additional line of defense. To assess the success window of FLEX strategies, all sources of uncertainties need to be considered, using a physics-based model or system code. This necessitates conducting a large number of simulations to reflect all potential variations in initial, boundary, and design conditions as well as thermophysical properties, empirical models, and scenario uncertainties. Alternatively, data-driven models may provide a fast tool to predict the success window of FLEX strategies given the underlying uncertainties. This paper explores the applicability of Artificial Intelligence (AI) to identify the success window of FLEX strategy for extended SBO. The developed model can be trained and validated using data produced by the lumped parameter thermal-hydraulic code, MARS-KS, as best estimate system code loosely coupled with Dakota for uncertainty quantification. A Systems Engineering (SE) approach is used to plan and manage the process of using AI to predict the success window of FLEX strategies under extended SBO conditions.

서울시 1인 가구의 코로나 19 전후 주거의 질 변화 연구: 인공신 경망과 로지스틱 회귀모형을 활용한 변수 중요도 및 인과관계 분석 (A Study on the Change of Quality in a Residential Sector of Single Person Households in Seoul during the COVID-19: Analyze Variable Importance and Causality with Artificial Neural Networks and Logistic Regression Analysis)

  • 임재빈;정기성
    • 토지주택연구
    • /
    • 제14권1호
    • /
    • pp.67-82
    • /
    • 2023
  • 본 연구의 목적은 서울시 1인 가구들의 코로나19 발생 전과 비교한 주거의 질 변화를 진단하고 이에 영향을 미치는 영향 요인에 대해 규명하는 것이다. 연구의 대상은 설문조사 응답자 가운데 서울시에 거주하는 1인 가구이며 인공신경망과 로지스틱 회귀모형을 사용하였다. 분석결과, 주거정책지원, 고용개선여부, 고용정책지원 요인 등이 1인 가구 주거의 질 변화에 중요 요인들로 나타났다. 서울시 1인 가구의 주거여건의 질 개선을 위한 정책적 지원 강화와 노력이 필요하며, 양질의 일자리 확대를 통한 고용난 해소는 주거 부문의 개선으로 이어질 것이다. 본 연구는 인공신경망이 가지는 블랙박스 특성과 인과관계를 규명하기 어려운 한계가 존재한다. 개선된 방법론으로 후속연구가 필요할 것이다.

인공신경망 기반 동결융해 작용을 받는 콘크리트의 내구성능 평가 (Estimation of Concrete Durability Subjected to Freeze-Thaw Based on Artificial Neural Network)

  • 할리오나;허인욱;최승호;김강수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권6호
    • /
    • pp.144-151
    • /
    • 2023
  • 이 연구에서는 동결융해 작용을 받는 다양한 콘크리트 배합에 대한 실험결과를 수집하여 데이터베이스를 구축하였다. 이를 바탕으로 동결융해 작용을 받는 콘크리트의 인공지능 기반 내구성능 평가모델을 개발하였으며, 회귀분석을 통해 상대동탄성계수 추정식을 도출하였다. 제안된 인공신경망 모델의 오류율과 결정계수는 각각 약 10.4%와 0.7이었으며, 회귀분석 추정식도 유사한 결과를 나타내었다. 따라서, 제안된 인공신경망 모델 및 회귀분석 추정식은 다양한 배합의 동결융해 작용을 받는 콘크리트에 대한 상대동탄성계수를 추정하는 데에 활용될 수 있을 것으로 판단된다.

원전 구조물의 경년열화를 고려한 지진응답예측 기계학습 모델의 성능평가 (Performance Evaluation of Machine Learning Model for Seismic Response Prediction of Nuclear Power Plant Structures considering Aging deterioration)

  • 김현수;김유경;이소연;장준수
    • 한국공간구조학회논문집
    • /
    • 제24권3호
    • /
    • pp.43-51
    • /
    • 2024
  • Dynamic responses of nuclear power plant structure subjected to earthquake loads should be carefully investigated for safety. Because nuclear power plant structure are usually constructed by material of reinforced concrete, the aging deterioration of R.C. have no small effect on structural behavior of nuclear power plant structure. Therefore, aging deterioration of R.C. nuclear power plant structure should be considered for exact prediction of seismic responses of the structure. In this study, a machine learning model for seismic response prediction of nuclear power plant structure was developed by considering aging deterioration. The OPR-1000 was selected as an example structure for numerical simulation. The OPR-1000 was originally designated as the Korean Standard Nuclear Power Plant (KSNP), and was re-designated as the OPR-1000 in 2005 for foreign sales. 500 artificial ground motions were generated based on site characteristics of Korea. Elastic modulus, damping ratio, poisson's ratio and density were selected to consider material property variation due to aging deterioration. Six machine learning algorithms such as, Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Artificial Neural Networks (ANN), eXtreme Gradient Boosting (XGBoost), were used t o construct seispic response prediction model. 13 intensity measures and 4 material properties were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks present good prediction performance considering aging deterioration.

재무예측을 위한 Support Vector Machine의 최적화 (Optimization of Support Vector Machines for Financial Forecasting)

  • 김경재;안현철
    • 지능정보연구
    • /
    • 제17권4호
    • /
    • pp.241-254
    • /
    • 2011
  • Support vector machines(SVM)은 비교적 최근에 등장한 데이터마이닝 기법이지만, 재무, CRM 등의 경영학 분야에서 많이 연구되고 있다. SVM은 인공신경망과 필적할 만큼의 예측 정확도를 보이는 사례가 많았지만, 암상자로 불리는 인공신경망 모형에 비해 구축된 예측모형의 구조를 이해하기 쉽고, 인공신경망에 비해 과도적합의 가능성이 적어서 적은 수의 데이터에서도 적용 가능하다는 장점을 가지고 있다. 하지만, 일반적인 SVM을 이용하려면, 인공신경망과 마찬가지로 여러 가지 설계요소들을 설계자가 선택하여야 하기 때문에 임의성이 높고, 국부 최적해에 수렴할 가능성도 크다. 또한, 많은 수의 데이터가 존재하는 경우에는 데이터를 분석하고 이용하는데 시간이 소요되고, 종종 잡음이 심한 데이터가 포함된 경우에는 기대하는 수준의 예측성과를 얻지 못할 가능성이 있다. 본 연구에서는 일반적인 SVM의 장점을 그대로 유지하면서, 전술한 두 가지 단점을 보완한 새로운 SVM 모형을 제안한다. 본 연구에서 제안하는 모형은 사례선택기법을 일반적인 SVM에 융합한 것으로 대용량의 데이터에서 예측에 불필요한 데이터를 선별적으로 제거하여 예측의 정확도와 속도를 제고할 수 있는 방법이다. 본 연구에서는 잡음이 많고 예측이 어려운 것으로 알려진 재무 데이터를 활용하여 제안 모형의 유용성을 확인하였다.

산란계의 전염성 기관지염을 예측하기 위한 인공신경망 모형의 개발 (Development an Artificial Neural Network to Predict Infectious Bronchitis Virus Infection in Laying Hen Flocks)

  • 박선일;권혁무
    • 한국임상수의학회지
    • /
    • 제23권2호
    • /
    • pp.105-110
    • /
    • 2006
  • 2003년 5월부터 2005년 11월까지 산란계의 전염성기관지염(IB) 예찰 프로그램에 등록한 농장에 대한 역학조사에서 얻은 자료에 근거하여 IB 감염을 확인할 수 있는 모형을 구축하기 위하여 16개의 입력 뉴런, 3 개의 은닉 뉴런, 1개의 출력 뉴런으로 구성된 3층 인공신경망 모형을 개발하였다. 총 86개의 계군 중 77개는 훈련자료에 할당하고 나머지 9개는 검정자료로 무작위로 할당하여 back-propagation algorithm으로 신경망 훈련을 수행하였다. 입력 뉴런은 산란계군의 특성, 사양관리, 계군의 크기 등 16개의 역학조사 항목을 사용하였으며 출력 뉴런은 IB 감염의 유무로 투입하였다. 훈련된 신경망을 검정자료에 적용하여 민감도와 특이도를 산출하였으며 진단의 정확도는 receiver operating characteristic (ROC) 곡선을 사용하여 곡선 밑의 면적(AUC)을 계산하여 평가하였다. 입력 뉴런의 특성과 훈련모수를 변경하면서 다양한 신경망을 구성하였으며 최적의 신경망으로 확인된 IBV_D1 신경망의 경우 훈련자료에 대하여 77건 중 73건을 올바르게 판단하여 94.8%의 정확도를 보였다. 민감도와 특이도는 각각 95.5% (42/44, 95% CI, 84.5-99.4)와 93.9% (31/33, 95% CI, 79.8-99.3)로 나타났다. 훈련된 신경망을 검정자료에 적용하여 ROC 곡선을 작성한 결과 AUC는 전체의 94.8% (SE=0.086, 95% CI 0.592-0.961)를 차지하는 우수한 모형으로 나타났다. ROC 곡선에서 기준을 0.7149 이상으로 판단할 때 진단의 정확도가 88.9%로 가장 높았으며 100%의 민감도를 달성하였다. 이러한 민감도와 특이도에서 44%의 IB 유병률을 가정할 때 IBV_D1 모형은 80%의 양성예측도와 100%의 음성예측도를 보였다. 이러한 소견에 근거할 때 본 연구에서 구축한 신경망 모형은 산란계군에서 IB의 존재를 확인하기 위한 목적에 성공적으로 응용될 수 있을 것으로 판단되었다.

확률적 정량모델을 이용한 토양에서의 바이러스 저감 평가 (Assessment of Viral Attenuation in Soil Using Probabilistic Quantitative Model)

  • 박정안;김재현;이인;김성배
    • 대한환경공학회지
    • /
    • 제33권7호
    • /
    • pp.544-551
    • /
    • 2011
  • 본 연구의 목적은 미국 환경보호청에서 개발한 확률적 정량모델인 VIRULO 모델의 구성과 특성을 분석하는 것이다. 이 모델은 몬테카를로 방법을 이용하여 수리지질학적 차단벽으로써 토양의 바이러스 저감능을 평가할 수 있는 모델이다. 모델에 사용된 지배방정식은 크게 불포화 지역에서의 물의 흐름식과 바이러스의 이동식으로 구성되어 있다. 사용되는 파라미터들 중, 물의 흐름과 관련된 파라미터는 11종류의 토양에 대하여 UNSODA 데이터베이스로부터 얻어진 것 들이며, 바이러스와 관련된 파라미터 값들은 다섯 종류의 바이러스에 대하여 문헌조사를 통해 정리된 것이다. 모델은 목표로 하는 바이러스 저감 역치값과 특정 조건에서 몬테카를로 모사를 통해 얻어진 토양의 바이러스 저감인자를 비교하여, 목표로 하는 바이러스 저감 역치값에 도달하지 못하는 확률을 결정한다. 그리고, 몬테카를로 모사횟수와 목표 역치값에 도달하지 못한 횟수를 결과물로 제시한다. 11개의 USDA 토양을 대상으로 바이러스 저감을 평가한 결과, 양질사토와 모래의 바이러스 저감능이 점토나 미사 계열의 토양에 비하여 상당히 떨어지는 것으로 평가되었다. 5종의 바이러스를 대상으로 저감을 비교한 결과, 바이러스 간에 저감 정도에 차이가 있는 것으로 나타났으며, 그 중 폴리오바이러스의 저감 정도가 가장 큰 것으로 분석되었다. 그리고, 토양 함수량이 증가함에 따라 토양의 바이러스 저감능이 급격하게 감소하였으며, 토양의 깊이가 증가함에 따라 바이러스 저감능이 비선형적으로 증가하였다. 본 연구에 의하면, VIRULO 모델은 지중환경에서의 바이러스 위해성 평가에 사용될 수 있는 유용한 스크리닝 도구로 판단된다.